Abstract

There is ongoing interest for evaluating the potential of renewable base stocks, such as vegetable oils, to replace petroleum oils as metal quenchants. Perhaps the most critical part of this process is characterizing and comparing the cooling and heat transfer performance of potential quenchant candidates. In this work, cooling curves of two vegetable oils, palm oil and canola oil, were obtained along with a commercially available conventional and an accelerated petroleum quenchant using the so-called Tensi multiple thermocouple probe, with emphasis on the center probe emulating a small probe concept. The lumped-parameter approach was implemented in the MATLAB environment (Mathworks Inc., Natick, MA). Experimental quenching data along with temperature-dependent thermal properties for the Inconel probe material were used to quantify the cooling characteristics and heat transfer properties of two typical vegetable and petroleum oil quenchants. The results obtained exhibited a fundamental difference in the cooling characteristics between the vegetable oils and also between both vegetable oils and the petroleum oil quenchants evaluated. The focus of this article will be on the development of the computational codes and the use of MATLAB to perform these analyses.

References

1.
Simencio Otero
,
R. L.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Use of Vegetable Oils and Animal Oils as Steel Quenchants: A Historical Review—1850–2010
,”
J. ASTM Int.
, Vol. 
9
, No. 
1
,
2012
, pp. 
1
38
, https://doi.org/10.1520/JAI103534
2.
Eamon
,
W.
,
Science and Secrets of Nature – Book of Secrets in Medieval Europe and Early Modern Culture
,
Princeton University Press
,
Princeton, NJ
,
1994
, pp. 
86
87
.
3.
MacKenzie
,
D. S.
and
Graham
,
G.
, “
Beer, Blood, and Urine—Mythological Quenchants of Ancient Blacksmiths
,” presented at the
23rd IFHTSE Congress (IFHT 2016)
, Savannah, GA, April 18–21,
2016
,
ASM International
,
Materials Park, OH
, pp. 
101
109
.
4.
Tagaya
,
M.
and
Tamura
,
I.
, “
No. 123 – Studies on the Quenching Media: 3rd Report. The Cooling Ability of Oils
,”
Technol. Rep. Osaka Univ.
, Vol. 
4
,
1954
, pp. 
305
319
.
5.
de Souza
,
E. C.
,
Fernandes
,
M. R.
,
Augustinho
,
S. C. M.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Comparison of Structure and Quenching Performance of Vegetable Oils
,”
J. ASTM Int.
, Vol. 
6
, No. 
9
,
2009
, pp. 
1
25
, https://doi.org/10.1520/JAI102188
6.
Carvalho de Souza
,
E.
,
Belinato
,
G.
,
Simencio Otero
,
R. L.
,
Cícero Adão Simêncio
,
É.
,
Augustinho
,
S. C. M.
,
Capelupi
,
W.
,
Conconi
,
C.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Thermal Oxidative Stability of Vegetable Oils as Metal Heat Treatment Quenchants
,”
J. ASTM Int.
, Vol. 
9
, No. 
1
,
2012
, pp. 
1
30
, https://doi.org/10.1520/JAI103817
7.
Belinato
,
G.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Effect of Antioxidants on Oxidative Stability and Quenching Performance of Soybean Oil and Palm Oil Quenchants
,”
J. ASTM Int.
, Vol. 
8
, No. 
9
,
2011
, pp. 
1
14
, https://doi.org/10.1520/JAI103376
8.
Simencio Otero
,
R. L.
,
Canale
,
L. C. F.
,
Schicchi
,
D. S.
,
Agaliotis
,
E.
,
Totten
,
G. E.
, and
Sarmiento
,
G. S.
, “
Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance
,”
J. Mater. Eng. Perform.
, Vol. 
22
, No. 
7
, pp. 
1937
1944
, https://doi.org/10.1007/s11665-013-0546-7
9.
Kobasko
,
N. I.
,
Batista
,
A. A.
,
Canale
,
L. C. F.
,
Totten
,
G. E.
, and
Dobryvechir
,
V. V.
, “
Cooling Capacity of Coconut Oil, Palm Oil, and a Commercial Petroleum Oil by Solving the Heat Conductivity Inverse Problem
,”
Mater. Perform. Charact.
, Vol. 
2
, No. 
1
,
2013
, pp. 
319
338
, https://doi.org/10.1520/MPC20120047
10.
Simencio Otero
,
R. L.
, “
Calculation of Kobasko’s Simplified Heat Transfer Coefficients from Cooling Curve Data Obtained with Small Probes
,”
J. ASTM Int.
, Vol. 
9
, No. 
4
,
2012
, pp. 
1
8
, https://doi.org/10.1520/JAI104304
11.
de Souza
,
E. C.
,
Canale
,
L. C. F.
,
Sarmiento
,
G. S.
,
Agaliotis
,
E.
,
Carrara
,
J. C.
,
Schicchi
,
D. S.
, and
Totten
,
G. E.
, “
Heat Transfer Properties of a Series of Oxidized and Unoxidized Vegetable Oils in Comparison with Petroleum Oil-Based Quenchants
,”
J. Mater. Eng. Perform.
, Vol. 
22
, No. 
7
,
2013
, pp. 
1871
1878
, https://doi.org/10.1007/s11665-013-0514-2
12.
Jagannath
,
V.
and
Prabhu
,
K. N.
, “
Severity of Quenching and Kinetics of Wetting of Nanofluids and Vegetable Oils
,”
J. ASTM Int.
, Vol. 
6
, No. 
3
,
2009
, pp. 
1
9
, https://doi.org/10.1520/JAI101800
13.
Ramesh
,
G.
and
Narayan Prabhu
,
K.
, “
Wetting and Cooling Performance of Vegetable Oils during Quench Hardening
,”
Heat Transfer Asian Res.
, Vol. 
45
, No. 
4
,
2016
, pp. 
342
357
, https://doi.org/10.1002/htj.21165
14.
ASTM D6200-01(2017)
Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
15.
ASTM D6482-06(2016)
Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method)
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
16.
ASTM D6549-06(2015)
Standard Test Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve Analysis with Agitation (Drayton Unit)
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
17.
Liščić
,
B.
, “
Measurement and Recording of Quenching Intensity in Workshop Conditions Based on Temperature Gradients
,”
Mater. Perform. Charact.
, Vol. 
5
, No. 
1
,
2016
, pp. 
209
226
, https://doi.org/10.1520/MPC20160007
18.
Matijevic
,
B.
,
Liscic
,
B.
,
Totten
,
G. E.
, and
Canale
,
L. C. F.
, “
Comparative Measurement and Evaluation of the Quenching Intensity of Palm Oil, Canola Oil and a Conventional Petroleum Oil Quenchant Based on Temperature Gradient Measurements
,”
Mater. Perform. Charact.
, Vol. 
6
, No. 
5
,
2017
, pp. 
757
776
, https://doi.org/10.1520/MPC20170041
19.
Recktenwald
,
G.
,
Numerical Methods with MATLAB: Implementations and Applications
, 2nd ed.,
Prentice Hall
,
Upper Saddle River, NJ
,
2000
, 816p.
20.
Magrab
,
E. B.
,
Azarm
,
S.
,
Balachandran
,
B.
,
Duncan
,
J. H.
,
Herold
,
K. E.
, and
Walsh
,
G. C.
,
An Engineer’s Guide to MATLAB, with Applications from Mechanical, Aerospace, Electrical, Civil, and Biological Systems Engineering
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
,
2011
, 848p.
21.
Ackerman
,
S. A.
, “
AOS 340 – Physics of the Atmosphere and Ocean: II. What is MATLAB?
” UW-MSN Space Science and Engineering Center, https://web.archive.org/web/20180917214111/http://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.htm (accessed 30 Aug. 2018).
22.
MathWorks “
MATLAB for Deep Learning
,” The MathWorks, Inc., https://web.archive.org/web/20180917220705/https://www.mathworks.com/ (accessed 17 Sep. 2018).
23.
Narazaki
,
M.
,
Kogawara
,
M.
,
Shirayori
,
A.
, and
Fuchizawa
,
S.
, “
Accuracy of Evaluation Methods for Heat Transfer Coefficients in Quenching
,” presented at the
18th ASM Heat Treating Society Conference Including the Liu Dai Symposium
,
Chicago, IL
, Oct. 12–15,
1998
,
ASM International
, Materials Park, OH, pp. 
509
517
.
24.
Funatani
,
K.
,
Narazaki
,
M.
, and
Tanaka
,
M.
, “
Comparisons of Probe Design and Cooling Curve Analysis Methods
,” presented at the
19th ASM Heat Treating Society Conference Including Steel Heat Treating in the New Millennium
, Cincinnati, OH, Nov. 1–4,
1999
,
ASM International
,
Materials Park, OH
, pp. 
255
263
.
25.
Hosaeus
,
H.
,
Seifter
,
A.
,
Kaschnitz
,
E.
, and
Pottlacher
,
G.
, “
Thermophyical Properties of Solid and Liquid Inconel 718 Alloy
,”
High Temp. High Pressures
, Vol. 
33
, No. 
4
,
2001
, pp. 
405
410
, https://doi.org/10.1068/htwu340
26.
de Souza
,
E. C.
,
Canale
,
L. C. F.
,
Sarmiento
,
G. S.
,
Agaliotis
,
E.
,
Carrara
,
J. C.
,
Schicchi
,
D. S.
, and
Totten
,
G. E.
, “
Heat Transfer Properties of a Series of Oxidized and Unoxidized Vegetable Oils in Comparison with Petroleum Oil-Based Quenchants
,” presented at the
26th ASM Heat Treating Society Conference
,
Cincinnati, OH
, Oct. 31–Nov. 2,
2011
,
ASM International
, Materials Park, OH, pp. 
235
243
.
28.
Gee
,
P. T.
, “
Analytical Characteristics of Crude and Refined Palm Oil and Fractions
,”
Eur. J. Lipid Sci. Technol.
, Vol. 
109
, No. 
4
,
2007
, pp. 
373
379
, https://doi.org/10.1002/ejlt.200600264
29.
Retief
,
L.
, “
Analysis of Vegetable Oils, Seeds and Beans by TGA and NMR Spectroscopy
,” Ph.D. thesis,
University of Stellenbosch
, Stellenbosch, South Africa,
2011
.
30.
Aluyor
,
E. O.
,
Ozigagu
,
C. E.
,
Oboh
,
O. I.
, and
Aluyor
,
P.
, “
Chromatographic Analysis of Vegetable Oils: A Review
,”
Sci. Res. Essay
, Vol. 
4
, No. 
4
,
2009
, pp. 
191
197
.
31.
Tensi
,
H. M.
,
Stich
,
A.
,
Spies
,
H. J.
, and
Spengler
,
A.
, “
Grundlagen des Abschreckens durch Tauchkühlen (Principles of Quenching by Immersion)
,”
HTM Härterei Tech. Mitt.
, Vol. 
50
, No. 
4
,
1995
, pp. 
254
258
.
32.
Tensi
,
H. M.
,
Stich
,
A.
, and
Totten
,
G. E.
, “
Fundamentals of Quenching
,”
Metal Heat Treat.
, March/April,
1995
, pp. 
20
28
.
This content is only available via PDF.
You do not currently have access to this content.