Abstract

The type of heat treatment process used is mainly determined by its cooling mode. Hardening is a metal heat treatment during which the most critical operation is cooling. Most quenchants used for steel hardening are vaporizable liquids, such as water, petroleum oils, emulsions, aqueous polymer solutions, or brines. Testing methodologies that include ISO 9950, Industrial Quenching Oils-determination of Cooling Characteristics-Nickel-alloy Probe Test Method, and ASTM Standards: D6200, Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis, D6482, Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method), D6549, Standard Test Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve Analysis with Agitation (Drayton Unit), and D7646, Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants for Aluminum Alloys by Cooling Curve Analysis, are typically used to evaluate the cooling characteristics of these quenchants or processes. The cooling time–temperature curves obtained by these methodologies traditionally involve three stages of cooling. However, the relationship between this model and heat treatment, especially between hardening theory and practice, has not been satisfactory. Therefore, it is necessary to better understand the relationship between cooling theory and metallurgical behavior to create a new cooling model that achieves zero distortion, zero dispersion of quality, and zero pollution, which are concepts proposed in the “Heat Treating Industry Vision 2020 “and the “Heat Treating Technology Roadmap 2004” by the ASM Heat Treating Society and Materials Treating Institute. The relationship between the physical metallurgical phenomenon of phase transformation of a steel workpiece during quenching after being austenitized and the actual cooling conditions in engineering practice were analyzed and discussed in this report. Additionally, the development of advanced cooling technologies and related quenching equipment are discussed. The evolution from cooling model research to cooling engineering construction represents important progress in heat treatment practice.

References

1.
Hassan
,
A. A.
and
Hamed
,
M. S.
, “
Toward the Achievement of Vision 2020 Goals of the Heat Treating Industry
,”
JOM
, Vol. 
62
, No. 
9
,
2010
, pp. 
55
59
, https://doi.org/10.1007/s11837-010-0138-z
2.
Gaster
,
R. J.
, “
ASM Heat Treating Society’s 1999 Research & Development Plan
,” 1999 Research Report, ASM Heat Treating Society, Materials Park, OH,
1999
, pp. 
1
20
.
3.
Totten
,
G. E.
and
Albano
,
L. L. M.
, “
IFHTSE Global 21: Heat Treatment and Surface Engineering in the 21 Century - Part 18: Quenching: Current Status and Future Developments
,”
Int. Heat Treat. Surf. Eng.
, Vol. 
6
, No. 
1
,
2013
, pp. 
4
14
, https://doi.org/10.1179/1749514811Z.0000000001
4.
Fabian
,
R.
, “
Heat Treating Community—To Achieve Vision 2020
,” 2001 Report, ASM Heat Treating Society, Materials Park, OH, 2001, pp. 
1
8
.
5.
Luo
,
X. M.
,
Shao
,
H. H.
,
Chen
,
K. M.
,
Sun
,
J.
, and
Totton
,
G. E.
, “
Evolution from ‘Cooling Model’ to ‘Cooling Engineering’ (in Chinese)
,”
Heat Treat.
, Vol. 
29
, No. 
5
,
2014
, pp. 
1
10
.
6.
Luo
,
X. M.
and
Totten
,
G. E.
, “
Wire Cooling Curve Analysis
,”
ASM Handbook, Vol. 4B: Steel Heat Treating Technologies
,
ASM International
,
Materials Park, OH
,
2014
, pp. 
310
313
.
7.
Luo
,
X. M.
and
Totten
,
G. E.
, “
Wire Patenting
,”
ASM Handbook, Vol. 4A: Steel Heat Treating Fundamentals and Processes
,
ASM International
,
Materials Park, OH
,
2013
, pp. 
257
261
.
8.
Luo
,
X. M.
,
Chen
,
K. M.
, and
Totten
,
G. E.
, “
Fast Primary Cooling: Alternative to Lead Baths for High-Carbon Steel Wire Patenting
,”
Mater. Perform. Charact.
, Vol. 
1
, No. 
1
,
2012
, pp. 
1
13
, https://doi.org/10.1520/MPC20120006
9.
Luo
,
X. M.
and
Totten
,
G. E.
, “
Analysis and Prevention of Quenching Failures and Proper Selection of Quenching Media: An Overview
,”
J. ASTM Int.
, Vol. 
8
, No. 
4
,
2011
, pp. 
1
29
, https://doi.org/10.1520/JAI103397
10.
Luo
,
X. M.
and
Li
,
J. K.
, “
Effects of Cooling Rate Fluctuation on Cooling and Transformation Behavior of Steel upon Direct Quenching
,”
J. ASTM Int.
, Vol. 
6
, No. 
2
,
2009
, pp. 
935
952
, https://doi.org/10.1520/JAI101775
11.
Canale
,
L. C. F.
,
Luo
,
X. M.
, and
Totten
,
G. E.
, “
Quenchant Characterization by Cooling Curve Analysis
,”
J. ASTM Int.
, Vol. 
6
, No. 
2
,
2009
, pp. 
861
899
, https://doi.org/10.1520/JAI101981
12.
Luo
,
X. M.
and
Li
,
F.
, “
Metallurgical Behaviors of High-Carbon Steel Wires in Lead Bath and CMC Aqueous Solutions by Cooling Curve Analysis
,”
Int. J. Mater. Prod. Technol.
, Vol. 
24
, Nos. 
1–4
,
2005
, pp. 
142
154
, https://doi.org/10.1504/IJMPT.2005.007945
13.
Luo
,
X. M.
, “
Cooling Behaviors of High-Carbon Steel Wires in Lead Bath and Alternatives for Patenting
,” presented at the
Fourth International Conference on Quenching and Control of Distortion
, Beijing, China, May 20–23,
2003
,
Chinese Heat Treatment Society
,
Beijing, China
, pp. 
247
252
.
14.
Luo
,
X. M.
and
Zhu
,
S. X.
, “
Merits of Small Probes in Research on Cooling Behavior of Steel upon Quenching
,” presented at the
Proceedings of the 21st ASM Heat Treating Society Conference
, Indiana Convention Center, Indianapolis, IN, Nov. 5–8,
2001
,
ASM International
,
Indianapolis, IN
, pp. 
225
229
.
15.
Zhu
,
S. X.
and
Luo
,
X. M.
, “
Experimental Research and Computerized Simulation on Carbon Steel’s Quenching Process
,” presented at the
21st ASM Heat Treating Society Conference
, Indiana Convention Center, Indianapolis, IN, Nov. 5–8,
2001
,
ASM International
,
Indianapolis, IN
, pp. 
220
224
.
16.
Luo
,
X. M.
and
Li
,
J. K.
, “
The Application of Dynamic Measurement to Exploration of Cooling Behavior of Steel upon Quenching
,” presented at the
20th Annual Conference on Heat Treating
, St. Louis, MO, Oct. 9–12,
2000
,
ASM International
,
Indianapolis, IN
, pp. 
648
651
.
17.
Luo
,
X. M.
, “
Function of Polymer Additive (CMC/PVA) in Spray Quenching of Steel
,” presented at the
International Symposium on Accelerated Cooling/Direct Quenching of Steels
, Indianapolis, IN, Sep. 14–18,
1997
,
ASM International
,
Indianapolis, IN
, pp. 
247
251
.
18.
Luo
,
X. M.
, “
Influence of Probe and Its Cooling Behavior on Assessing Cooling Characteristics of Quenching
,” presented at the
Second International Conference on Quenching and Control of Distortion
, Cleveland, OH, Nov. 4–7,
1996
,
ASM International
,
Indianapolis, IN
, pp. 
503
508
.
19.
Luo
,
X.
and
Liu
,
H.
, “
Relations between Probe Design and Interpretation of Results for Quenching Media Test
,”
J. Jiangsu Univ. Sci. Technol.
, Vol. 
17
, No. 
5
,
1996
, pp. 
50
55
.
20.
Liu
,
H. N.
and
Luo
,
X. M.
, “
A New Process and Equipment for Direct Quenching of Gear Blank after Forging
,” presented at the
International Heat Treating Conference: Equipment and Process
, Schaumburg, IL, April 18–20,
1994
,
ASM International
,
Indianapolis, IN
, pp. 
463
468
.
21.
Luo
,
X. M.
and
Liu
,
H. N.
, “
Study on the Cooling Characteristics for Steel in Spray Quenching
,” presented at the
International Heat Treating Conference: Equipment and Process
, Schaumburg, IL, April 18–20,
1994
,
ASM International
,
Indianapolis, IN
, pp. 
455
461
.
22.
Vanpaemel
,
J.
, “
History of the Hardening of Steel : Science and Technology
,”
J. Phys. Colloques
, Vol. 
43
, No. 
4
,
1982
, pp. 
847
854
.
23.
MacKenzie
,
D. S.
and
Graham
,
G.
, “
Beer, Blood and Urine—Mythological Quenchants of Ancient Blacksmiths
,” presented at the
23rd IFHTSE Congress
, Savannah, GA, April 18–21,
2016
,
International Federation of Heat Treatment and Surface Engineering
,
Savannah, GA
, pp. 
101
109
.
24.
ISO 9950
Industrial Quenching Oils-determination of Cooling Characteristics-Nickel-alloy Probe Test Method
,
International Organization for Standardization
,
Geneva, Switzerland
,
1995
, www.iso.org
25.
ASTM D6200-01
Standard Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis
,
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
26.
ASTM D6482-06
Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method)
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
27.
ASTM D6549-06
Standard Test Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve Analysis with Agitation (Drayton Unit)
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
28.
JB/T 4392
Method for Determination of Properties of Water-Soluble Quenching Medium for Organic Compounds
(in Chinese),
GB Standards
,
Shenzhen, China
,
1999
, www.gbstandards.org
29.
JB/T 7951-2004
Industrial Quenching Oil. Determination of Cooling Characteristics. Nickel-Alloy Probe Test Method
(in Chinese),
GB Standards
,
Shenzhen, China
,
2004
, www.gbstandards.org
30.
Totten
,
G. E.
,
Bates
,
C. E.
, and
Clindon
,
N. A.
,
Handbook of Quenchants and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
, 507p.
31.
Roberts
,
G. A.
,
Hamaker
,
J. C.
, and
Johnson
,
A. R.
,
Tool Steels
, 3rd ed.,
ASM International
,
Materials Park, OH
,
1962
, 315p.
32.
Liščić
,
B.
, “
Possibilities of Heat Transfer Control During Quenching
,”
Mater. Technol.
, Vol. 
42
, No. 
11
,
2008
, pp. 
1
19
.
33.
Luo
,
X. M.
and
Li
,
J. K.
, “
Dynamic Characteristics upon Quench-Cooling and Actual Quenching of Steel Workpieces (in Chinese)
,”
Heat Treat.
, Vol. 
24
, No. 
5
,
2009
, pp. 
44
49
.
34.
Liščić
,
B.
,
Tens
,
H. M.
, and
Lauralice
,
C. F.
,
Quenching Theory and Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
,
2010
, 725p.
35.
Bobok
,
A. N.
, “
Use of Fluidized Bed in Heat Treatment Shops of the Machine Building Industry under Conditions of the Competitive Market
,”
Met. Sci. Heat Treat.
, Vol. 
47
, Nos. 
3–4
,
2005
, pp. 
97
102
.
36.
Liščić
,
B
,
Tensi
,
H. M.
, and
Luty
,
W.
,
Theory and Technology of Quenching
,
Springer-Verlag Berlin
,
Heidelberg, Germany
,
1992
, 484p.
37.
Totten
,
G. E.
,
Luigi
,
L. M.
,
Albano
,
L. L. M.
, and
Lauralice
,
C. F. C.
, “
Into the ‘Black Hole’ of Heat Treating: Brine Quenching
,” presented at the
Fifth International Conference on Heat Treatment and Surface Engineering in Asia
, Hangzhou, China, Nov. 12–14,
2016
,
Chinese Heat Treatment Society
,
Beijing, China
, pp. 
18
29
.
38.
Liščić
,
B.
, “
Measurement and Recording of Quenching Intensity in Workshop Conditions Based on Temperature Gradients
,”
Mater. Perform. Charact.
, Vol. 
5
, No. 
1
,
2016
, pp. 
209
226
, https://doi.org/10.1520/MPC20160007
39.
Kobasko
,
N.
and
Liščić
,
B.
, “
Liščić/Petrofer Probe to Investigate Real Industrial Hardening Processes and Some Fundamentals of Quenching Steel Parts in Liquid Media
,”
Phys. Eng.
, Vol. 
6
, No. 
6
,
2017
, pp. 
48
56
.
40.
JIS K 2242
Heat Treating Fluids
,
Japanese Industrial Standard / Japanese Standards Association
,
Tokyo, Japan
,
2012
, www.jsa.or
41.
Funatani
,
K.
,
Narazaki
,
M.
, and
Tanaka
,
M.
, “
Evaluation of Testing Methods of Cooling Power of Liquid Quenchants
,” presented at the
Third International Conference on Quenching and Control of Distortion
, Prague, Czech Republic, March 14–26,
1999
,
ASM International
,
Materials Park, OH
, pp. 
515
521
.
42.
ASTM D7646-10
Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants for Aluminum Alloys by Cooling Curve Analysis
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
43.
Segerberg
,
S. O.
, “
Classification of Quench Oils: A Method of Comparison
,”
Heat Treat.
, Vol. 
20
, No. 
12
,
1988
, pp. 
30
33
.
44.
Zeng
,
G. Y.
, “
Identification and Evaluation for Cooling Curve of Quenchants
,”
Met. Heat Treat.
, Vol. 
3
,
1999
, pp. 
38
40
.
45.
Chen
,
C. H.
and
Zhou
,
J. E.
, “
Analysis of the Segerberg Hardening Power Equation
,”
Quenching and Cooling, Residual Stress and Distortion Control, ASTM STP1523
, C. Lauralice and N. Michiharu, Eds.,
ASTM International West Conshohocken
,
PA
,
2010
, 11p, https://doi.org/10.1520/STP49195S
46.
Luo
,
X. M.
and
Totten
,
G. E.
, “
Distortion Control: Quenching Apparatus for Hardening Parts: An Overview
,”
Mater. Perform. Charact.
, Vol. 
3
, No. 
4
,
2014
, pp. 
1
28
, https://doi.org/10.1520/MPC20130086
47.
Li
,
F.
, “
Computer Simulation of Quenchant Flow-Field in Quenching Tank with Agitating Unit (in Chinese)
,” M.A. thesis,
Jiangsu University
, Jiangsu, China,
2005
.
48.
Kumar
,
A.
,
Metwally
,
H.
,
Paingankar
,
S.
, and
MacKenzie
,
D. S.
, “
Evaluation of Flow Uniformity around Automotive Pinion Gears during Quenching
,”
Härtereitechnische Mitteilungen
, Vol. 
62
, No. 
6
,
2007
, pp. 
274
278
, https://doi.org/10.3139/105.100438
49.
Chen
,
N.
,
Zhang
,
W. M.
,
Li
,
Q.
,
Gao
,
C. Y.
,
Liao
,
B.
, and
Pan
,
J. S.
, “
Optimization of Quench Tank Structure Based on CFD Simulation
,”
Solid State Phenom.
, Vol. 
118
,
2006
, pp. 
363
368
, https://doi.org/10.4028/www.scientific.net/SSP.118.363
50.
Bineli
,
A. R. R.
,
Barbosa
,
M. I. R.
,
Jardini
,
A. L.
, and
Filho
,
R. M.
, “
Simulation to Analyze Two Models of Agitation System in Quench Process
,”
Comput. Aided Chem. Eng.
, Vol. 
25
,
2010
, pp. 
1715
1720
.
51.
Banka
,
A.
,
Franklin
,
J.
,
Li
,
Z.
,
Lynn
,
F. B.
, and
Aronov
,
M.
, “
CFD and FEA Used to Improve the Quenching Process
,”
Heat Treat. Prog.
,
2008
, pp. 
50
56
.
52.
Krukovskyi
,
P.
,
Kobasko
,
N.
, and
Yurchenko
,
D.
, “
Generalized Equation for Cooling Time Evaluation and Its Verification by CFD Analysis
,”
J. ASTM Int.
, Vol. 
6
, No. 
5
,
2011
, pp. 
1
15
, https://doi.org/10.1520/JAI101760
53.
MacKenzie
,
D. S.
,
Kumar
,
A.
, and
Metwally
,
H.
, “
Optimizing Agitation and Quench Uniformity Using CFD
,” presented at
Proceedings of the 23rd ASM Heat Treating Society Conference
, Pittsburgh, PA, Sep. 25–28,
2005
, ASM International, Materials Park, OH, pp. 
271
278
.
54.
Kobasko
,
N. I.
,
Aronov
,
M. A.
, and
Powell
,
J. A.
,
Intensive Quenching System: Engineering and Design
,
ASTM International
,
West Conshohocken, PA
,
2010
, 252p.
55.
Aronov
,
M. A.
,
Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries
, DOE Award Number: DE-FC36-03ID,
EMTEC
,
Dayton, OH
,
2005
, 50p.
56.
Aronov
,
M. A.
,
Kobasko
,
N. I.
, and
Powell
,
J. A.
, “
Industrial-Scale Intensive Quenching Process for Tool Products Commercialization
,” Report No. EMTEC CT-76-II, EMTEC, Dayton, OH,
2005
, 28p.
57.
Kobasko
,
N. I.
, “
Steel Superstrengthening Phenomenon, Part I
,”
Int. J. Mater. Prod. Technol.
, Vol.
24
, Nos. 
1–4
,
2005
, pp. 
361
374
.
58.
Totten
,
G. E.
,
Steel Heat Treatment: Equipment and Process Design
,
Taylor & Francis
,
New York, NY
,
2006
, 714p.
59.
Dossett
,
J. I.
and
Totten
,
G. E
,
ASM Handbook, Vol. 4A: Steel Heat Treating Fundamentals and Processes
,
ASM International
,
Materials Park, OH
,
2013
, 784p.
60.
Chen
,
N. L.
and
Zhang
,
W. M.
, “
Application of Numerical Control Technology of Quench-Cooling (in Chinese)
,” presented at the
Ninth National Heat Treatment Conference
, Dailan, China, Sep. 16–19,
2007
,
Chinese Heat Treatment Society
,
Dalian, China
, pp. 
90
96
.
61.
Totten
,
G. E.
,
Steel Heat Treatment: Equipment and Process Design
,
CRC press, Taylor & Francis
,
New York, NY
,
2007
, 714p.
This content is only available via PDF.
You do not currently have access to this content.