The ductile-to-brittle cutting mode transition in single grit diamond scribing of monocrystalline silicon is investigated in this paper. Specifically, the effects of scriber tip geometry, coefficient of friction, and external hydrostatic pressure on the critical depth of cut associated with ductile-to-brittle transition and crack generation are studied via an eXtended Finite Element Method (XFEM) based model, which is experimentally validated. Scribers with a large tip radius are shown to produce lower tensile stresses and a larger critical depth of cut compared with scribers with a sharp tip. Spherical tipped scribers are shown to generate only surface cracks, while sharp tipped scribers (conical, Berkovich and Vickers) are found to create large subsurface tensile stresses, which can lead to nucleation of subsurface median/lateral cracks. Lowering the friction coefficient tends to increase the critical depth of cut and hence the extent of ductile mode cutting. The results also show that larger critical depth of cut can be obtained under external hydrostatic pressure. This knowledge is expected to be useful in optimizing the design and application of the diamond coated wire employed in fixed abrasive diamond wire sawing of photovoltaic silicon wafers.

References

1.
Möller
,
H. J.
,
2004
, “
Basic Mechanisms and Models of Multi-Wire Sawing
,”
Adv. Eng. Mater.
,
6
(
7
),
pp.
501
513
.10.1002/(ISSN)1527-2648
2.
Möller
,
H. J.
,
2006
, “
Wafering of Silicon Crystals
,”
Phys. Status Solidi A
,
203
(
4
),
pp.
659
669
.10.1002/pssa.v203:4
3.
Wu
,
H.
,
Melkote
,
S. N.
, and
Danyluk
,
S.
,
2012
, “
Mechanical Strength of Silicon Wafers Cut by Loose Abrasive Slurry and Fixed Abrasive Diamond Wire Sawing
,”
Adv. Eng. Mater.
, (in press). 10.1002/adem.201100263
4.
Bidiville
,
A.
, Wasmer, K., Draft, R., and Ballif, C.,
2009
, “
Diamond Wire-Sawn Silicon Wafers: From the Lab to the Cell Production
,”
Proceedings of the 24th EUPVSEC
,
Hamburg
,
pp.
1400
1405
.
5.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O
,
1991
, “
Ductile-Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
(
2
),
pp.
184
189
.10.1115/1.2899676
6.
Scott
,
C. G.
, and
Danyluk
,
S.
,
1992
, “
Examination of Silicon Wear Debris Generated in a Linear Scratch Test
,”
Wear
,
152
,
pp.
183
185
.10.1016/0043-1648(92)90213-R
7.
Li
,
X. P.
, Cai, M., Rahman, M., and Liang, S.,
2010
, “
Study of the Upper Bound of Tool Edge Radius in Nanoscale Ductile Mode Cutting of Silicon Wafer
,”
Int. J. Adv. Manuf. Technol.
,
48
,
pp.
993
999
.10.1007/s00170-009-2347-6
8.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
High-Pressure Phase Transformation as the Mechanism of Ductile Chip Formation in Nanoscale Cutting of Silicon Wafer
,”
Proc. IMechE, Part B: J Eng. Manuf.
,
221
(
10
),
pp.
1511
1519
.10.1243/09544054JEM901
9.
Liu
,
K.
, Li, X. P., Rahman, M., Neo, K. S., and Liu, X. D.,
2007
, “
A Study of the Effect of Tool Cutting Edge Radius on Ductile Cutting of Silicon Wafers
,”
Int. J. Adv. Manuf. Technol.
,
33
,
pp.
875
884
.10.1007/s00170-006-0531-5
10.
Yan
,
J.
, Asami, T., Harada, H., and Kuriyagawa, T.,
2009
, “
Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon by Diamond Machining
,”
Precis. Eng.
,
33
,
pp.
378
386
.10.1016/j.precisioneng.2008.10.008
11.
Wang
,
J. J.
, and
Liao
,
Y.Y.
,
2008
, “
Critical Depth of Cut and Specific Cutting Energy of a Microscribing Process for Hard and Brittle Materials
,”
ASME J. Eng. Mater. Technol.
,
130
, p.
011002
.10.1115/1.2806253
12.
Shibata
,
T
, Fujii, S., Eiji, M., and Ikeda, M.,
1996
, “
Ductile-Regime Turning Mechanism of Single-Crystal Silicon
,”
Prec. Eng.
,
18
,
pp.
129
137
.10.1016/0141-6359(95)00054-2
13.
Shibata
,
T.
, Atsushi, O., Kenji, K., Eiji, M., and Ikeda, M.,
1994
, “
Cross-Section Transmission Electron Microscope Observation of Diamond-Turned Single-Crystal Si Surface
,”
Appl. Phys. Lett.
,
65
(
20
),
pp.
2553
2555
.10.1063/1.112633
14.
Gogotsi
,
Y.
, Zhou, G., Ku, S., and Cetinkunt, S.,
2001
, “
Raman Microspectroscopy Analysis of Pressure-Induced Metallization in Scratching of Silicon
,”
Semicond. Sci. Technol.
,
16
(
5
),
pp.
345
352
.10.1088/0268-1242/16/5/311
15.
Morris
,
J. C.
, and
Callahan
,
D. L.
,
1994
, “
The Extent of Phase Transformation in Silicon Hardness Indentations
,”
J. Mater. Res.
,
9
(
11
),
pp.
2907
2913
.10.1557/JMR.1994.2907
16.
Sukumar
,
N.
, Moes, N., Moran, B., and Belytschko, T.,
2000
, “
Extended Finite Element Method for Three-Dimensional Crack Modelling
,”
Int. J. Numer. Methods Eng.
,
48
,
pp.
1549
1570
.10.1002/1097-0207(20000820)
17.
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2005
, “
Analysis of Three-Dimensional Crack Initiation and Propagation Using the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
63
,
pp.
760
788
.10.1002/(ISSN)1097-0207
18.
ABAQUS Analysis User's Manual, Version 6.10. Dassault Systèmes Simulia Corp., Providence, RI.
19.
Hu
,
J. Z.
, Merkle, L. D., Menoni, C. S., and Spain, I. L.,
1986
, “
Crystal Data for High-Pressure Phase of Silicon
,”
Phys. Rev. B
,
34
,
pp.
4679
4684
.10.1103/PhysRevB.34.4679
20.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
,
pp.
153
156
.10.1063/1.1713863
21.
Duclos
,
S.
,
Vohra
,
Y.
, and
Ruoff
,
A.
,
1990
, “
Experimental Study of the Crystal Stability and Equation of State of Si to 248 GPa
,”
Phys. Rev. B
,
41
(
17
),
pp.
12021
12028
.10.1103/PhysRevB.41.12021
22.
Gerbig
,
Y. B.
, Stranick, S. J., Morris, D. J., Vaudin, M. D., and Cook, R. F.,
2009
, “
Effect of Crystallographic Orientation on Phase Transformations During Indentation of Silicon
,”
J. Mater. Res.
,
24
(
3
),
pp.
1172
1182
.10.1557/jmr.2009.0122
23.
Kozhushko
,
V. V.
, and
Hess
,
P.
,
2010
, “
Comparison of Mode-Resolved Fracture Strength of Silicon with Mixed-Mode Failure of Diamond Crystals
,”
Eng. Fract. Mech.
,
77
(
2
),
pp.
193
200
.10.1016/j.engfracmech.2009.03.015
24.
Hesketh
,
P. J.
, Ju, C., and Gowda, S.,
1993
, “
Surface Free Energy Model of Silicon Anisotropic Etching
,”
J. Electrochem. Soc.
,
140
(
4
),
pp.
1080
1085
.10.1149/1.2056201
25.
Marshall
,
D. B.
, Lawn, B. R., and Evans, A. G.,
1982
, “
Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System
,”
J. Am. Ceram. Soc.
,
65
(
11
),
pp.
561
566
.10.1111/jace.1982.65.issue-11
26.
Lawn
,
B. R.
, Evan, A. G., and Marshall, D. B.,
1980
, “
Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System
,”
J. Am. Ceram. Soc.
,
63
(
9
10
),
pp.
574
581
.10.1111/j.1151-2916.1980.tb10768.x
27.
Fang
,
F. Z.
, and
Zhang
,
G. X.
,
2003
, “
An Experimental Study of Edge Radius Effect on Cutting Single Crystal Silicon
,”
Int. J. Adv. Manuf. Technol.
,
22
,
pp.
703
707
.10.1007/s00170-003-1593-2
28.
Bridgman
,
P. W.
,
1947
, “
The Effect of Hydrostatic Pressure on the Fracture of Brittle Substances
,”
J. Appl. Phys.
,
18
,
pp.
246
258
.10.1063/1.1697610
29.
Yoshino
,
M.
, Aoki, T., Shirakashi, T., and Komanduri, R.,
2001
, “
Some Experiments on the Scratching of Silicon: In Situ Scratching Inside an SEM and Scratching Under High External Hydrostatic Pressure
,”
Int. J. Mech. Sci.
,
43
(2)
,
pp.
335
347
.10.1016/S0020-7403(00)00019-9
You do not currently have access to this content.