The prediction of temperature-dependent fatigue deformation and damage in directionally solidified and single-crystal nickel-base superalloy components used in the hot section of gas turbine engines requires a constitutive model that accounts for the crystal orientation in addition to the changing deformation mechanisms and rate dependencies from room temperature to extremes of the use temperature (e.g., 1050 °C). Crystal viscoplasticity (CVP) models are ideal for accounting for all of these dependencies. However, as the models become more physically realistic in capturing the true cyclic deformation mechanisms, increases the requirements to achieve an accurate model calibration. As a result, CVP models have yet to become viable for life analysis in industry. To make CVP models an industry relevant tool, the calibration times must be reduced. This paper explores methods to reduce the calibration time. First, a series of special calibration experiments are conceived and conducted on each relevant orientation and microstructure. Second, a set of parameterization protocols are used to minimize parameter interdependencies that reduce the amount of iteration required during the calibration. These experimental and calibration protocols are exercised using the CVP model of Shenoy et al. (2005, “Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy,” ASME J. Eng. Mater. Technol., 127(3), pp. 325–336) by calibrating a directionally solidified Ni-base superalloy across an industry relevant temperature range of 20 °C to 1050 °C.

References

1.
Gostic
,
W.
,
2012
, “
Application of Materials and Process Modeling to the Design, Development and Sustainment of Advanced Turbine Engines
,” Twelfth International Symposium on Superalloys (
Superalloys 2012
),
Seven Springs
,
PA
, September 9–13, pp.
3
12
.10.1002/9781118516430.ch1
2.
Schafrik
,
R.
, and
Walston
,
S.
,
2008
, “
Challenges for High Temperature Materials in the New Millennium
,” 11th International Symposium on Superalloys (
Superalloys 2008
),
Champion
,
PA
, September 14–18, pp.
3
9
, available at: http://www.tms.org/superalloys/10.7449/2008/Superalloys_2008_3_9.pdf
3.
National Science and Technology Council
,
2011
, “Materials Genome Initiative for Global Competitiveness,” Office of Science and Technology Policy, Washington, DC.
4.
Cowles
,
B.
,
Backman
,
D.
, and
Dutton
,
R.
,
2012
, “
Verification and Validation of ICME Methods and Models for Aerospace Applications
,”
Integr. Mater. Manuf. Innovation
,
1
(1), p. 2.10.1186/2193-9772-1-2
5.
Reed
,
R. C.
,
2006
,
The Superalloys Fundamentals and Applications
,
Cambridge University
, Cambridge, UK.
6.
Song
,
J.
,
2010
, “
Hierarchical Multiscale Modeling of Ni-Base Superalloys
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
7.
Smith
,
D. J.
,
2011
, “
Rapid Determination of Temperature-Dependent Parameters for the Crystal Viscoplasticity Model
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
8.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
,
2005
, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
ASME J. Eng. Mater. Technol.
,
127
(
3
), pp.
325
336
.10.1115/1.1924560
9.
Shenoy
,
M.
,
Tjiptowidjojo
,
Y.
, and
McDowell
,
D.
,
2008
, “
Microstructure-Sensitive Modeling of Polycrystalline IN 100
,”
Int. J. Plast.
,
24
(
10
), pp.
1694
1730
.10.1016/j.ijplas.2008.01.001
10.
Song
,
J. E.
, and
McDowell
,
D. L.
,
2012
, “
Grain Scale Crystal Plasticity Model With Slip and Microtwinning for a Third Generation Ni-Base Disk Alloy
,” Twelfth International Symposium on Superalloys (
Superalloys 2012
), Seven Springs, PA, September 9–13, pp.
159
166
.10.1002/9781118516430.ch18
11.
Busso
,
E. P.
, and
McClintock
,
F. A.
,
1996
, “
A Dislocation Mechanics-Based Crystallographic Model of a B2-Type Intermetallic Alloy
,”
Int. J. Plast.
,
12
(
1
), pp.
1
28
.10.1016/S0749-6419(95)00041-0
12.
Wang
,
A. J.
,
Kumar
,
R. S.
,
Shenoy
,
M. M.
, and
McDowell
,
D. L.
,
2006
, “
Microstructure-Based Multiscale Constitutive Modeling of γ-γ’ Nickel-Base Superalloys
,”
Int. J. Multiscale Comput. Eng.
,
4
(5–6), pp.
663
692
.10.1615/IntJMultCompEng.v4.i5-6.70
13.
Chaboche
,
J. L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.10.1016/0749-6419(89)90015-6
14.
Bilby
,
B. A.
,
Bullough
,
R.
, and
Smith
,
E.
,
1955
, “
Continuous Distributions of Dislocations: A New Application of the Methods of Non-Riemannian Geometry
,”
Proc. R. Soc. London, Ser. A
,
231
(
1185
), pp.
263
273
.10.1098/rspa.1955.0171
15.
Sheh
,
M. Y.
,
1988
, “
Anisotropic Constitutive Modeling for Nickel-Base Single Crystal Superalloys
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH, NASA Technical Report No. CR-182157.
16.
Srikanth
,
A.
, and
Zabaras
,
N.
,
1999
, “
A Computational Model for the Finite Element Analysis of Thermoplasticity Coupled With Ductile Damage at Finite Strains
,”
Int. J. Numer. Methods Eng.
,
45
(11), pp.
1569
1605
.10.1002/(SICI)1097-0207(19990820)45:11%3C1569::AID-NME644%3E3.0.CO;2-P
17.
Gandy
,
D.
, and
Scheibel
,
J.
,
2006
, “
Life Management System for Advanced E Class Gas Turbines: General Electric 7EA 1st Stage Bucket Analysis
,” Electric Power Research Institute, Palo Alto, CA, Technical Report No. 1010477
.
18.
Bettge
,
D.
, and
Österle
,
W.
,
1999
, “
‘Cube Slip’ in Near-[111] Oriented Specimens of a Single-Crystal Nickel-Base Superalloy
,”
Scr. Mater.
,
40
(
4
), pp.
389
395
.10.1016/S1359-6462(98)00446-1
19.
McDowell
,
D.
,
Antolovich
,
S.
, and
Oehmke
,
R.
,
1992
, “
Mechanistic Considerations for TMF Life Prediction of Nickel-Base Superalloys
,”
Nucl. Eng. Des.
,
133
(3), pp.
383
399
.10.1016/0029-5493(92)90164-Q
20.
Qin
,
Q.
, and
Bassani
,
J. L.
,
1992
, “
Non-Schmid Yield Behavior in Single Crystals
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
813
833
.10.1016/0022-5096(92)90005-M
21.
Paidar
,
V.
,
Pope
,
D.
, and
Vitek
,
V.
,
1984
, “
A Theory of the Anomalous Yield Behavior in L12 Ordered Alloys
,”
Acta Metall.
,
32
(
3
), pp.
435
448
.10.1016/0001-6160(84)90117-2
22.
Stouffer
,
D. C.
,
Sheh
,
M. Y.
, and Dame, L. T.,
1990
, “
Anisotropic Constitute Modeling of a Single Crystal Superalloy at Elevated Temperature
,”
ASME Appl. Mech. Rev.
,
43
(5S), pp.
S345
S352
.10.1115/1.3120838
23.
Moore
,
Z. J.
, and
Neu
,
R. W.
,
2011
, “
Creep Fatigue of a Directionally Solidified Ni-Base Superalloy—Smooth and Cylindrically Notched Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
1
), pp.
17
31
.10.1111/j.1460-2695.2010.01487.x
24.
American Society for Testing and Materials
, 2012, “
Standard Test Method for Strain-Controlled Fatigue Testing
,” ASTM International, West Conshohocken, PA,
ASTM
Standard E606/E606M-12.10.1520/E0606_E0606M-12
25.
McGinty
,
R.
,
2001
, “
Multiscale Representation of Polycrystalline Ineleasticity
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
26.
ABAQUS Inc.
, ABAQUS/Standard: User's Manual Volume II, Version 6.3, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.
27.
Nye
,
J. F.
,
1957
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford University Press
, Oxford, UK.
28.
Kuhn
,
H. A.
, and
Sockel
,
H. G.
,
1988
, “
Comparison Between Experimental Determination and Calculation of Elastic Properties of Nickel-Base Superalloys Between 25 and 1200 °C
,”
Phys. Status Solidi A
,
110
(2), pp.
449
458
.10.1002/pssa.2211100217
29.
Kuhn
,
H. A.
, and
Sockel
,
H. G.
,
1989
, “
Elastic Properties of Textured and Directionally Solidified Nickel-Based Superalloys Between 25 and 1200 °C
,”
Mater. Sci. Eng. A
,
112
, pp.
117
126
.10.1016/0921-5093(89)90350-X
30.
Fernandez-Zelaia
,
P.
,
2012
, “
Thermomechanical Fatigue Formation in Nickel-Base Superalloys at Notches
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
31.
Amaro
,
R.
,
2010
, “
Thermomechanical Fatigue Crack Formation in Single Crystal Ni-Base Superalloys
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
32.
Kupkovits
,
R.
,
2008
, “
Thermomechanical Fatigue Behavior of the Directionally-Solidified Nickel-Base Superalloy CM247
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
33.
Kocks
,
U.
,
1970
, “
The Relation Between Polycrystal Deformation and Single-Crystal Deformation
,”
Metall. Mater. Trans.
,
1
(5), pp.
1121
1143
.10.1007/BF02900224
34.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
35.
Asaro
,
R.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42: Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.10.1016/0001-6160(85)90188-9
36.
Kocks
,
U. F.
,
Tomé
,
C. N.
,
Wenk
,
H. R.
, and
Mecking
,
H.
,
2000
,
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
Cambridge University
, Press, Cambridge, UK.
37.
Daleo
,
J.
,
Ellison
,
K.
, and
Woodford
,
D.
,
1999
, “
Application of Stress Relaxation Testing in Metallurgical Life Assessment Evaluations of GTD111 Alloy Turbine Buckets
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
129
137
.10.1115/1.2816299
38.
Nabarro
,
F. R. N.
, and
de Villiers
,
F.
,
1995
,
Physics of Creep and Creep Resistant Alloys
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.