Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

With the increasing interest in adopting additively manufactured (AM) IN718 for high-temperature applications, driven by the design and manufacturing flexibility offered by AM technologies, understanding its fatigue performance is crucial before full-scale adoption. This article reviews the recent literature on the high-temperature fatigue behavior of AM IN718. The review focuses on two primary stages of fatigue damage: fatigue crack initiation and fatigue crack growth. Notably, most existing studies have concentrated on fatigue crack initiation, and thus, this review emphasizes this aspect. In the fatigue crack initiation stage, discrepancies in low cycle fatigue (LCF) and high cycle fatigue (HCF) life performances are observed in the literature. Some studies have shown that the average room temperature fatigue life of AM IN718 is superior or comparable to that at high temperatures in the LCF regime. Conversely, in the HCF regime, high-temperature fatigue life is sometimes found to be superior to that at room temperature. However, other studies indicate no clear trend regarding the effect of temperature on the HCF life. Although various mechanisms have been proposed to either improve or degrade fatigue performance across the LCF, HCF, and very high cycle fatigue (VHCF) regimes, the underlying reasons for the distinct behaviors in these regimes remain unclear. Competing mechanisms, such as surface oxide formation and thermally driven dislocations glide, can potentially enhance or reduce fatigue life. However, the interaction and control of these mechanisms over the fatigue strength of AM IN718 are not yet fully understood. Systematic studies are required to elucidate their roles in high-temperature fatigue. Microstructural investigations have suggested that controlling the formation and precipitation of deleterious secondary phases is crucial for tailoring the high-temperature fatigue strength of AM IN718. Therefore, it is imperative to design heat treatment protocols informed by a comprehensive understanding of phase formation kinetics to improve the high-temperature fatigue performance of AM IN718 compared to their traditionally manufactured counterparts. This is particularly important for IN718 parts manufactured using directed energy deposition technology, which currently lacks standardized heat treatment procedures. The review also identifies open research areas and provides recommendations for future work to address these gaps.

References

1.
Donachie
,
M. J.
, and
Donachie
,
S. J.
,
2002
,
Superalloys: A Technical Guide
,
ASM International
,
Materials Park, OH
.
2.
Onuike
,
B.
, and
Bandyopadhyay
,
A.
,
2018
, “
Additive Manufacturing of Inconel 718 – Ti6Al4V Bimetallic Structures
,”
Addit. Manuf.
,
22
, pp.
844
851
.
3.
Brandes
,
E. A.
, and
Brook
,
G. B.
,
2004
,
Smithells Metals Reference Book
, 8th ed.,
Elsevier
,
Amsterdam
, pp.
14-1
14-25
.
4.
Yong
,
C. K.
,
Gibbons
,
G. J.
,
Wong
,
C. C.
, and
Wes
,
G.
,
2020
, “
A Critical Review of the Material Characteristics of Additive Manufactured IN718 for High-Temperature Application
,”
Metals (Basel)
,
10
, p.
1576
.
5.
Srinivasan
,
D.
,
2021
, “
Challenges in Qualifying Additive Manufacturing for Turbine Components: A Review
,”
Trans. Indian Inst. Met.
,
74
(
5
), pp.
1107
1128
.
6.
Nezhadfar
,
P. D.
,
Johnson
,
A. S.
, and
Shamsaei
,
N.
,
2020
, “
Fatigue Behavior and Microstructural Evolution of Additively Manufactured Inconel 718 Under Cyclic Loading at Elevated Temperature
,”
Int. J. Fatigue
,
136
, p.
105598
.
7.
Fatemi
,
A.
,
Molaei
,
R.
,
Sharifimehr
,
S.
,
Phan
,
N.
, and
Shamsaei
,
N.
,
2017
, “
Multiaxial Fatigue Behavior of Wrought and Additive Manufactured Ti-6Al-4V Including Surface Finish Effect
,”
Int. J. Fatigue
,
100
, pp.
347
366
.
8.
Babu
,
S. S.
,
Raghavan
,
N.
,
Raphlee
,
J.
,
Foster
,
S. J.
,
Frederick
,
C.
,
Haines
,
M.
,
Dinwiddie
,
R.
, et al
,
2018
, “
Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification
,”
Metall. Mater. Trans. A
,
49
(
9
), pp.
3764
3780
.
9.
Kirka
,
M. M.
, and
Fernandez-Zelaia
,
P.
,
2022
,
Additive Materials for High Temperature Applications
, Vol.
1
, pp.
529
536
.
10.
Diegel
,
O.
,
Nordin
,
A.
, and
Motte
,
D.
,
2020
,
A Practical Guide to Design for Additive Manufacturing
,
Springer
, pp.
19
39
.
11.
Wang
,
J.
,
Zhang
,
M.
,
Wang
,
B.
,
Tan
,
X.
,
Wu
,
W. J.
,
Liu
,
Y.
,
Bi
,
G. J.
,
Tor
,
S. B.
, and
Liu
,
E.
,
2021
, “
Influence of Surface Porosity on Fatigue Life of Additively Manufactured ASTM A131 EH36 Steel
,”
Int. J. Fatigue
,
142
, p.
105894
.
12.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Stinville
,
J. C.
,
Charpagne
,
M. A.
,
Cervellon
,
A.
,
Hemery
,
S.
,
Wang
,
F.
,
Callahan
,
P. G.
,
Valle
,
V.
, and
Pollock
,
T. M.
,
2022
, “
On the Origins of Fatigue Strength in Crystalline Metallic Materials
,”
Science
,
377
(
6610
), pp.
1065
1071
.
14.
Mughrabi
,
H.
,
2015
, “
Microstructural Mechanisms of Cyclic Deformation, Fatigue Crack Initiation and Early Crack Growth
,”
Philos. Trans. R. Soc. A
,
373
(
2038
), p.
20140132
.
15.
Sangid
,
M. D.
,
2013
, “
The Physics of Fatigue Crack Initiation
,”
Int. J. Fatigue
,
57
, pp.
58
72
.
16.
Molaei
,
R.
,
Fatemi
,
A.
,
Sanaei
,
N.
,
Pegues
,
J.
,
Shamsaei
,
N.
,
Shao
,
S.
,
Li
,
P.
,
Warner
,
D. H.
, and
Phan
,
N.
,
2020
, “
Fatigue of Additive Manufactured Ti-6Al-4V, Part II: The Relationship Between Microstructure, Material Cyclic Properties, and Component Performance
,”
Int. J. Fatigue
,
132
, p.
105363
.
17.
Bhaduri
,
A.
,
2018
,
Mechanical Properties and Working of Metals and Alloys
,
Springer
,
New York
.
18.
Becker
,
T. H.
,
Kumar
,
P.
, and
Ramamurty
,
U.
,
2021
, “
Fracture and Fatigue in Additively Manufactured Metals
,”
Acta Mater.
,
219
, p.
117240
.
19.
Pineau
,
A.
, and
Antolovich
,
S. D.
,
2009
, “
High Temperature Fatigue of Nickel-Base Superalloys – A Review With Special Emphasis on Deformation Modes and Oxidation
,”
Eng. Fail. Anal.
,
16
(
8
), pp.
2668
2697
.
20.
Yin
,
Q.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
, and
Cai
,
Y.
,
2020
, “
Recent Progress of Machinability and Surface Integrity for Mechanical Machining Inconel 718: A Review
,”
Int. J. Adv. Manuf. Technol.
,
109
(
1–2
), pp.
215
245
.
21.
Balasubramanian
,
S.
,
Philpott
,
C.
,
Hyder
,
J.
,
Corliss
,
M.
, and
Tai
,
B.
,
2020
, “
Testing Techniques and Fatigue of Additively Manufactured Inconel 718 – A Review
,”
Int. J. Eng. Mater. Manuf.
,
5
, pp.
156
194
.
22.
Kawagoishi
,
N.
,
Chen
,
Q.
, and
Nisitani
,
H.
,
2000
, “
Fatigue Strength of Inconel 718 at Elevated Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
3
), pp.
209
216
.
23.
Zhang
,
Z.
,
Teng
,
Z.
,
Wang
,
J.
,
Huang
,
Z.
, and
Münstermann
,
S.
,
2022
, “
Very High Cycle Fatigue Behaviors of GH4169 Superalloy at Room and High Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
6
), pp.
1796
1806
.
24.
Avateffazeli
,
M.
,
Webster
,
G.
,
Tahmasbi
,
K.
, and
Haghshenas
,
M.
,
2022
, “
Very High Cycle Fatigue at Elevated Temperatures: A Review on High Temperature Ultrasonic Fatigue
,”
J. Space Saf. Eng.
,
9
(
4
), pp.
488
512
.
25.
Antunes
,
F. V.
,
Ferreira
,
J. M.
,
Branco
,
C. M.
, and
Byrne
,
J.
,
2000
, “
High Temperature Fatigue Crack Growth in Inconel 718
,”
Mater. High Temp.
,
17
(
4
), pp.
439
448
.
26.
Xu
,
J.
,
Huang
,
Z.
, and
Jiang
,
L.
,
2017
, “
Effect of Heat Treatment on Low Cycle Fatigue of IN718 Superalloy at the Elevated Temperatures
,”
Mater. Sci. Eng. A
,
690
(
100
), pp.
137
145
.
27.
Hörnqvist
,
M.
,
Månsson
,
T.
, and
Gustafsson
,
D.
,
2011
, “
High Temperature Fatigue Crack Growth in Alloy 718 – Effect of Tensile Hold Times
,”
Procedia Eng.
,
10
, pp.
147
152
.
28.
Maciejewski
,
K. E.
,
2013
, “
The Role of Microstructure on Deformation and Damage Mechanisms in a Ni-Based Superalloy at Elevated Temperatures
,” Dissertation,
University of Rhode Island
,
Kingston, RI
.
29.
Jaber
,
H.
,
Kovacs
,
T.
, and
János
,
K.
,
2022
, “
Investigating the Impact of a Selective Laser Melting Process on Ti6Al4V Alloy Hybrid Powders With Spherical and Irregular Shapes
,”
Adv. Mater. Process. Technol.
,
8
(
1
), pp.
715
731
.
30.
Liu
,
S. Y.
,
Shao
,
S.
,
Guo
,
H.
,
Zong
,
R.
,
Qin
,
C. X.
, and
Fang
,
X. Y.
,
2022
, “
The Microstructure and Fatigue Performance of Inconel 718 Produced by Laser-Based Powder Bed Fusion and Post Heat Treatment
,”
Int. J. Fatigue
,
156
, p.
106700
.
31.
Xin
,
Q.
,
2013
, “
Durability and Reliability in Diesel Engine System Design
,”
Diesel Engine Syst. Des.
, pp.
113
202
.
32.
Dowling
,
N. E.
,
2013
,
Mechanical Behavior of Materials
,
Prentice Hall
,
Hoboken, NJ
.
33.
Sadeghi
,
E.
,
Karimi
,
P.
,
Esmaeilizadeh
,
R.
,
Berto
,
F.
,
Shao
,
S.
,
Moverare
,
J.
,
Toyeserkani
,
E.
, and
Shamsaei
,
N.
,
2023
, “
A State-of-the-Art Review on Fatigue Performance of Powder Bed Fusion-Built Alloy 718
,”
Prog. Mater. Sci.
,
133
, p.
101066
.
34.
Mostafaei
,
A.
,
Zhao
,
C.
,
He
,
Y.
,
Ghiaasiaan
,
S. R.
,
Shi
,
B.
,
Shao
,
S.
,
Shamsaei
,
N.
, et al
,
2022
, “
Defects and Anomalies in Powder Bed Fusion Metal Additive Manufacturing
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
2
), p.
100974
.
35.
Stinville
,
J. C.
,
Martin
,
E.
,
Karadge
,
M.
,
Ismonov
,
S.
,
Soare
,
M.
,
Hanlon
,
T.
,
Sundaram
,
S.
, et al
,
2018
, “
Fatigue Deformation in a Polycrystalline Nickel Base Superalloy at Intermediate and High Temperature: Competing Failure Modes
,”
Acta Mater.
,
152
, pp.
16
33
.
36.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
(
August
), p.
100877
.
37.
Laleh
,
M.
,
Sadeghi
,
E.
,
Revilla
,
R. I.
,
Chao
,
Q.
,
Haghdadi
,
N.
,
Hughes
,
A. E.
,
Xu
,
W.
, et al
,
2023
, “
Heat Treatment for Metal Additive Manufacturing
,”
Prog. Mater. Sci.
,
133
, p.
101051
.
38.
Shahwaz
,
M.
,
Nath
,
P.
, and
Sen
,
I.
,
2022
, “
A Critical Review on the Microstructure and Mechanical Properties Correlation of Additively Manufactured Nickel-Based Superalloys
,”
J. Alloys Compd.
,
907
, p.
164530
.
39.
DebRoy
,
T.
,
Mukherjee
,
T.
,
Wei
,
H. L.
,
Elmer
,
J. W.
, and
Milewski
,
J. O.
,
2021
, “
Metallurgy, Mechanistic Models and Machine Learning in Metal Printing
,”
Nat. Rev. Mater.
,
6
(
1
), pp.
48
68
.
40.
Song
,
Z.
,
Gao
,
W.
,
Wang
,
D.
,
Wu
,
Z.
,
Yan
,
M.
, and
Huang
,
L.
,
2021
, “
Very-High-Cycle Fatigue Behavior of Inconel 718 Alloy Fabricated by Selective Laser Melting at Elevated Temperature
,”
Materials
,
14
(
4
), p.
1001
.
41.
Kistler
,
N. A.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Corbin
,
D. J.
, and
Beese
,
A. M.
,
2017
, “
Effect of Directed Energy Deposition Processing Parameters on Laser Deposited Inconel® 718: Microstructure, Fusion Zone Morphology, and Hardness
,”
J. Laser Appl.
,
29
(
2
), p.
022005
.
42.
Tucho
,
W. M.
,
Cuvillier
,
P.
,
Sjolyst-kverneland
,
A.
, and
Hansen
,
V.
,
2017
, “
Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting Before and After Solution Heat Treatment
,”
Mater. Sci. Eng. A
,
689
, pp.
220
232
.
43.
Artaza
,
T.
,
Bhujangrao
,
T.
,
Suárez
,
A.
,
Veiga
,
F.
, and
Lamikiz
,
A.
,
2020
, “
Influence of Heat Input on the Formation of Laves Phases and Hot Cracking in Plasma Arc Welding (PAW) Additive Manufacturing of Inconel 718
,”
Metals (Basel)
,
10
(
6
), pp.
1
17
.
44.
Raghavan
,
S.
,
Zhang
,
B.
,
Wang
,
P.
,
Sun
,
C.
,
Nai
,
M. L. S.
,
Li
,
T.
, and
Wei
,
J.
,
2017
, “
Effect of Different Heat Treatments on the Microstructure and Mechanical Properties in Selective Laser Melted INCONEL 718 Alloy
,”
Mater. Manuf. Process.
,
32
(
14
), pp.
1588
1595
.
45.
Anderson
,
M.
,
Thielin
,
A. L.
,
Bridier
,
F.
,
Bocher
,
P.
, and
Savoie
,
J.
,
2017
, “
δ‌ Phase Precipitation in Inconel 718 and Associated Mechanical Properties
,”
Mater. Sci. Eng. A
,
679
, pp.
48
55
.
46.
Ghorbanpour
,
S.
,
Alam
,
M. E.
,
Ferreri
,
N. C.
,
Kumar
,
A.
,
McWilliams
,
B. A.
,
Vogel
,
S. C.
,
Bicknell
,
J.
,
Beyerlein
,
I. J.
, and
Knezevic
,
M.
,
2020
, “
Experimental Characterization and Crystal Plasticity Modeling of Anisotropy, Tension-Compression Asymmetry, and Texture Evolution of Additively Manufactured Inconel 718 at Room and Elevated Temperatures
,”
Int. J. Plast.
,
125
, pp.
63
79
.
47.
Mostafa
,
A.
,
Rubio
,
I. P.
,
Brailovski
,
V.
,
Jahazi
,
M.
, and
Medraj
,
M.
,
2017
, “
Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments
,”
Metals (Basel)
,
7
(
6
), p.
196
.
48.
Manikandan
,
S. G. K.
,
Sivakumar
,
D.
,
Prasad Rao
,
K.
, and
Kamaraj
,
M.
,
2015
, “
Laves Phase in Alloy 718 Fusion Zone – Microscopic and Calorimetric Studies
,”
Mater. Charact.
,
100
, pp.
192
206
.
49.
Li
,
J.
,
Zhao
,
Z.
,
Bai
,
P.
,
Qu
,
H.
,
Liu
,
B.
, and
Li
,
L.
,
2019
, “
Microstructural Evolution and Mechanical Properties of IN718 Alloy Fabricated by Selective Laser Melting Following Different Heat Treatments
,”
J. Alloys Compd.
,
772
, pp.
861
870
.
50.
ASTM International
,
2021
, “Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) With Powder Bed Fusion (F3055 – 14a),” pp.
1
8
.
51.
Wan
,
H. Y.
,
Luo
,
Y. W.
,
Zhang
,
B.
,
Song
,
Z. M.
,
Wang
,
L. Y.
,
Zhou
,
Z. J.
,
Li
,
C. P.
,
Chen
,
G. F.
, and
Zhang
,
G. P.
,
2020
, “
Effects of Surface Roughness and Build Thickness on Fatigue Properties of Selective Laser Melted Inconel 718 at 650 °C
,”
Int. J. Fatigue
,
137
, p.
105654
.
52.
Bemfica
,
C.
,
Nascimento
,
V.
,
Fessler
,
E.
,
Araújo
,
J. A.
, and
Castro
,
F.
,
2022
, “
Multiaxial Fatigue of Inconel 718 Produced by Selective Laser Melting at Room and High Temperature
,”
Int. J. Fatigue
,
163
, p.
107108
.
53.
Nascimento
,
V.
,
Bemfica
,
C.
,
Fessler
,
E.
,
Araújo
,
J. A.
, and
Castro
,
F.
,
2022
, “
Multiaxial Fatigue of Forged Inconel 718 at Room and High Temperature
,”
Theor. Appl. Fract. Mech.
,
122
, p.
103547
.
54.
Schirra
,
J. J.
,
Caless
,
R. H.
, and
Hatala
,
R. W.
,
1991
, “
The Effect of Laves Phase on the Mechanical Properties of Wrought and Cast + HIP Inconel 718
,”
Superalloys
,
718
(
625
), pp.
375
388
.
55.
Sui
,
S.
,
Chen
,
J.
,
Fan
,
E.
,
Yang
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2017
, “
The Influence of Laves Phases on the High-Cycle Fatigue Behavior of Laser Additive Manufactured Inconel 718
,”
Mater. Sci. Eng. A
,
695
, pp.
6
13
.
56.
Ghiaasiaan
,
R.
,
Poudel
,
A.
,
Ahmad
,
N.
,
Gradl
,
P. R.
,
Shao
,
S.
, and
Shamsaei
,
N.
,
2021
, “
High Temperature Tensile and Fatigue Behaviors of Additively Manufactured IN625 and IN718
,”
Proc. Struct. Integr.
,
38
(
C
), pp.
581
587
.
57.
Moiz
,
M.
,
2013
, “The Influence of Grain Size on the Mechanical Properties of Inconel 718.” http://www.diva-portal.org/smash/get/diva2:779274/FULLTEXT01.pdf
58.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components – Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
59.
Gribbin
,
S.
,
Ghorbanpour
,
S.
,
Ferreri
,
N. C.
,
Bicknell
,
J.
, and
Tsukrov
,
I.
,
2019
, “
Role of Grain Structure, Grain Boundaries, Crystallographic Texture, Precipitates, and Porosity on Fatigue Behavior of Inconel 718 at Room and Elevated Temperatures
,”
Mater. Charact.
,
149
, pp.
184
197
.
60.
Kobayashi
,
K.
,
Yamaguchi
,
K.
,
Hayakawa
,
M.
, and
Kimura
,
M.
,
2005
, “
Grain Size Effect on High-Temperature Fatigue Properties of Alloy 718
,”
Mater. Lett.
,
59
(
2–3
), pp.
383
386
.
61.
Sausto
,
F.
,
Marchese
,
G.
,
Bassini
,
E.
,
Calandri
,
M.
,
Biamino
,
S.
,
Ugues
,
D.
,
Foletti
,
S.
, and
Beretta
,
S.
,
2021
, “
Anisotropic Mechanical and Fatigue Behaviour of Inconel718 Produced by SLM in LCF and High-Temperature Conditions
,”
Fatigue Fract. Eng. Mater. Struct.
,
44
(
1
), pp.
271
292
.
62.
Ni
,
M.
,
Chen
,
C.
,
Wang
,
X.
,
Wang
,
P.
,
Li
,
R.
,
Zhang
,
X.
, and
Zhou
,
K.
,
2017
, “
Anisotropic Tensile Behavior of In Situ Precipitation Strengthened Inconel 718 Fabricated by Additive Manufacturing
,”
Mater. Sci. Eng. A
,
701
, pp.
344
351
.
63.
Kirka
,
M. M.
,
Greeley
,
D. A.
,
Hawkins
,
C.
, and
Dehoff
,
R. R.
,
2017
, “
Effect of Anisotropy and Texture on the Low Cycle Fatigue Behavior of Inconel 718 Processed Via Electron Beam Melting
,”
Int. J. Fatigue
,
105
, pp.
235
243
.
64.
Sui
,
S.
,
Tan
,
H.
,
Chen
,
J.
,
Zhong
,
C.
,
Li
,
Z.
,
Fan
,
W.
,
Gasser
,
A.
, and
Huang
,
W.
,
2019
, “
The Influence of Laves Phases on the Room Temperature Tensile Properties of Inconel 718 Fabricated by Powder Feeding Laser Additive Manufacturing
,”
Acta Mater.
,
164
, pp.
413
427
.
65.
Sonntag
,
N.
,
Piesker
,
B.
,
Calderon
,
L. A. A.
,
Mohr
,
G.
,
Rehmer
,
B.
,
Jacome
,
L. A.
,
Hilgenberg
,
K.
,
Evans
,
A.
, and
Skrotzki
,
B.
,
2024
, “
Tensile and Low-Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature
,”
Adv. Eng. Mater
,
26
(
10
), p.
2302122
.
66.
Li
,
W. B.
,
Pang
,
J. C.
,
Zhang
,
H.
,
Li
,
S. X.
, and
Zhang
,
Z. F.
,
2022
, “
The High-Cycle Fatigue Properties of Selective Laser Melted Inconel 718 at Room and Elevated Temperatures
,”
Mater. Sci. Eng. A
,
836
(
Nov. 2021
), p.
142716
.
67.
Radhakrishnan
,
J.
,
Kumar
,
P.
,
Li
,
S.
,
Zhao
,
Y.
, and
Ramamurty
,
U.
,
2022
, “
Unnotched Fatigue of Inconel 718 Produced by Laser Beam-Powder Bed Fusion at 25 and 600 °C
,”
Acta Mater.
,
225
, p.
117565
.
68.
Yu
,
X.
,
Lin
,
X.
,
Wang
,
Z.
,
Zhang
,
S.
,
Gao
,
X.
,
Zhang
,
Y.
,
Ren
,
Y.
, and
Huang
,
W.
,
2021
, “
Room and High Temperature High-Cycle Fatigue Properties of Inconel 718 Superalloy Prepared Using Laser Directed Energy Deposition
,”
Mater. Sci. Eng. A
,
825
, p.
141865
.
69.
Cervellon
,
A.
,
Cormier
,
J.
,
Mauget
,
F.
, and
Hervier
,
Z.
,
2017
, “
VHCF Life Evolution After Microstructure Degradation of a Ni-Based Single Crystal Superalloy
,”
Int. J. Fatigue
,
104
, pp.
251
262
.
70.
Zhao
,
Z.
,
Yang
,
W.
,
Li
,
L.
,
Sun
,
S.
,
Zeng
,
Y.
, and
Yue
,
Z.
,
2023
, “
Improved High-Temperature Fatigue Performance of Laser Directed Energy Deposited Ni-Based Superalloy by Regulating the Heat Treatment
,”
Int. J. Fatigue
,
169
, p.
107463
.
71.
Ling
,
L. S. B.
,
Yin
,
Z.
,
Hu
,
Z.
,
Wang
,
J.
, and
De Sun
,
B.
,
2019
, “
Effects of the γ-Ni3Nb Phase on Fatigue Behavior of Nickel-Based 718 Superalloys With Different Heat Treatments
,”
Materials (Basel)
,
12
(
23
), p.
3979
.
72.
Akita
,
M.
,
Uematsu
,
Y.
,
Kakiuchi
,
T.
,
Nakajima
,
M.
, and
Nakamura
,
Y.
,
2014
, “
Effect of Laves Phase Precipitation on Fatigue Properties of Niobium-Containing Austenitic Stainless Steel Type 347 in Laboratory Air and in 3%NaCl Solution
,”
Proc. Mater. Sci.
,
3
, pp.
517
523
.
73.
Sui
,
S.
,
Li
,
Z.
,
Zhong
,
C.
,
Zhang
,
Q.
,
Gasser
,
A.
,
Chen
,
J.
,
Chew
,
Y.
, and
Bi
,
G.
,
2021
, “
Laves Phase Tuning for Enhancing High Temperature Mechanical Property Improvement in Laser Directed Energy Deposited Inconel 718
,”
Composites, Part B
,
215
, p.
108819
.
74.
Li
,
Z.
,
Sui
,
S.
,
Ma
,
X.
,
Tan
,
H.
,
Zhong
,
C.
,
Bi
,
G.
,
Clare
,
A.
,
Gasser
,
A.
, and
Chen
,
J.
,
2022
, “
High Deposition Rate Powder- and Wire-Based Laser Directed Energy Deposition of Metallic Materials: A Review
,”
Int. J. Mach. Tools Manuf.
,
181
, p.
103942
.
75.
Sivaprasad
,
K.
, and
Raman
,
S. G. S.
,
2007
, “
Influence of Magnetic Arc Oscillation and Current Pulsing on Fatigue Behavior of Alloy 718 TIG Weldments
,”
Mater. Sci. Eng. A
,
448
(
1–2
), pp.
120
127
.
76.
Balachandramurthi
,
A. R.
,
Jaladurgam
,
N. R.
,
Kumara
,
C.
,
Hansson
,
T.
,
Moverare
,
J.
,
Gardstam
,
J.
, and
Pederson
,
R.
,
2020
, “
On the Microstructure of Laser Beam Powder Bed Fusion Alloy 718 and Its Influence on the Low Cycle Fatigue Behaviour
,”
Materials (Basel)
,
13
(
22
), p.
5198
.
77.
Lambert
,
D.
,
2016
, “
Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-in718
,”
63rd JANNAF Propulsion Meeting
, p.
14
. https://ntrs.nasa.gov/search.jsp?R=20160006998
78.
Bianchetti
,
C.
,
Tsoutsouva
,
M. G.
, and
Toualbi
,
L.
,
2023
, “
Surface Treatment Impact on Fatigue Life at 550 °C of the As-Built Inconel 718 Manufactured by Laser-Powder Bed Fusion
,”
Mater. Charact.
,
206
(
Part A
), p.
113386
.
79.
Ghouse
,
S.
,
Babu
,
S.
,
Van Arkel
,
R. J.
,
Nai
,
K.
,
Hooper
,
P. A.
, and
Jeffers
,
J. R. T.
,
2017
, “
The Influence of Laser Parameters and Scanning Strategies on the Mechanical Properties of a Stochastic Porous Material
,”
Mater. Des.
,
131
, pp.
498
508
.
80.
Kjellsson
,
H.
,
Balachandramurthi
,
A. R.
,
Moverare
,
J.
, and
Hansson
,
T.
,
2022
, “
High Temperature Fatigue Performance of Electron Beam Powder Bed Fusion Manufactured Alloy 718
,”
Metall. Mater. Trans. A
,
53
(
7
), pp.
2496
2514
.
81.
Sun
,
R.
,
Li
,
W.
,
Zhang
,
Y.
,
Wang
,
P.
,
Hu
,
T.
,
Lashari
,
M. I.
,
Sakai
,
T.
, and
Zhang
,
W.
,
2022
, “
Interior Long-Life-Fatigue Cracking Behavior and Life Prediction of a Selective Laser Melted GH4169 Superalloy at Different Temperatures and Stress Ratios
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
7
), pp.
2112
2126
.
82.
Li
,
W.
,
Sun
,
R.
,
Hu
,
T.
,
Li
,
X.
,
Zhang
,
Y.
,
Ding
,
X.
, and
Wang
,
P.
,
2021
, “
Effect of Elevated Temperature on High-Cycle and Very-High-Cycle Fatigue Properties of Ni-Based Superalloy Manufactured by Selective Laser Melting
,”
Int. J. Fatigue
,
148
, p.
106250
.
83.
Schmiedel
,
A.
,
Burkhardt
,
C.
,
Henkel
,
S.
,
Weidner
,
A.
, and
Biermann
,
H.
,
2021
, “
Very High Cycle Fatigue Investigations on the Fatigue Strength of Additive Manufactured and Conventionally Wrought Inconel 718 at 873 K
,”
Metals (Basel)
,
11
(
11
), p.
1682
.
84.
Hu
,
T.
,
Li
,
W.
,
Yuan
,
S.
,
Zhang
,
Y.
,
Li
,
X.
,
Cai
,
L.
,
Mo
,
Z.
, and
Li
,
C.
,
2022
, “
Multiscale Analysis of Interior Cracking Behavior of Ni-Based Superalloy Fabricated by Selective Laser Melting Under Very-High-Cycle-Fatigue at High-Temperature
,”
Mater. Today Commun.
,
33
, p.
104356
.
85.
Koyama
,
M.
,
Noguchi
,
H.
, and
Tsuzaki
,
K.
,
2022
, “Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth,”
The Plaston Concept: Plastic Deformation in Structural Materials
,
Springer Nature
,
Singapore
, pp.
213
234
.
86.
Jiang
,
R.
,
Song
,
Y. D.
, and
Reed
,
P. A.
,
2020
, “
Fatigue Crack Growth Mechanisms in Powder Metallurgy Ni-Based Superalloys – A Review
,”
Int. J. Fatigue
,
141
(
May
), p.
105887
.
87.
Fatemi
,
A.
, and
Shamsaei
,
N.
,
2011
, “
Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation
,”
Int. J. Fatigue
,
33
(
8
), pp.
948
958
.
88.
Kim
,
S.
,
Choi
,
H.
,
Lee
,
J.
, and
Kim
,
S.
,
2020
, “
Room and Elevated Temperature Fatigue Crack Propagation Behavior of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
140
, p.
105802
.
89.
Carrion
,
P. E.
,
Soltani-Tehrani
,
A.
,
Phan
,
N.
, and
Shamsaei
,
N.
,
2019
, “
Powder Recycling Effects on the Tensile and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Parts
,”
JOM
,
71
(
3
), pp.
963
973
.
90.
Sutton
,
A. T.
,
Kriewall
,
C. S.
,
Leu
,
M. C.
, and
Newkirk
,
J. W.
,
2017
, “
Powder Characterisation Techniques and Effects of Powder Characteristics on Part Properties in Powder-Bed Fusion Processes
,”
Virtual Phys. Prototyp.
,
12
(
1
), pp.
3
29
.
91.
Alamos
,
F. J.
,
Schiltz
,
J.
,
Kozlovsky
,
K.
,
Tomonto
,
C.
,
Pelletiers
,
T.
, and
Schmid
,
S. R.
,
2020
, “
Effect of Powder Reuse on Mechanical Properties of Ti-6Al-4V Produced Through Selective Laser Melting
,”
Int. J. Refract. Met. Hard Mater.
,
91
(
Dec. 2019
), p.
105273
.
92.
Ardila
,
L. C.
,
Garciandia
,
F.
,
Gonzalez-Diaz
,
J. B.
,
Alvarez
,
P.
,
Echeverria
,
A.
,
Petite
,
M. M.
,
Deffley
,
R.
, and
Ochoa
,
J.
,
2014
, “
Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting
,”
Phys. Procedia
,
56
(
C
), pp.
99
107
.
93.
Choi
,
H.
,
Kim
,
S.
,
Goto
,
M.
, and
Kim
,
S.
,
2021
, “
Effect of Powder Recycling on Room and Elevated Temperature Damage Tolerability of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion
,”
Mater. Charact.
,
171
, p.
110818
.
94.
de Luca
,
D. M.
,
Hamilton
,
A. R.
, and
Reed
,
P. A. S.
,
2023
, “
Influence of Build Orientation on High Temperature Fatigue Crack Growth Mechanisms in Inconel 718 Fabricated by Laser Powder Bed Fusion: Effects of Temperature and Hold Time
,”
Int. J. Fatigue
,
170
, p.
107484
.
95.
Ma
,
X. F.
,
Zhai
,
H. L.
,
Zuo
,
L.
,
Zhang
,
W. J.
,
Rui
,
S. S.
,
Han
,
Q. N.
,
Jiang
,
J. S.
, et al
,
2020
, “
Fatigue Short Crack Propagation Behavior of Selective Laser Melted Inconel 718 Alloy by In-Situ SEM Study: Influence of Orientation and Temperature
,”
Int. J. Fatigue
,
139
, p.
105739
.
96.
Gribbin
,
S.
,
Bicknell
,
J.
,
Jorgensen
,
L.
,
Tsukrov
,
I.
, and
Knezevic
,
M.
,
2016
, “
Low Cycle Fatigue Behavior of Direct Metal Laser Sintered Inconel Alloy 718
,”
Int. J. Fatigue
,
93
, pp.
156
167
.
97.
Solberg
,
K.
,
Wan
,
D.
, and
Berto
,
F.
,
2020
, “
Fatigue Assessment of As-Built and Heat-Treated Inconel 718 Specimens Produced by Additive Manufacturing Including Notch Effects
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
10
), pp.
2326
2336
.
98.
Yuen
,
J. L.
,
Roy
,
P.
, and
Nix
,
W. D.
,
1984
, “
Effect of Oxidation Kinetics on the Near Threshold Fatigue Crack Growth Behavior of a Nickel Base Superalloy
,”
Metall. Trans. A
,
15
, pp.
1769
1775
.
99.
Branco
,
C. M.
, and
Rosa
,
L. G.
,
2012
,
Advances in Fatigue Science and Technology
, Vol.
159
,
Kluwer Academic Publishers
,
Dordrecht/Boston/London
.
100.
Liu
,
H. W.
, and
Oshida
,
Y.
,
1986
, “
Grain Boundary Oxidation and Oxidation Accelerated Fatigue Crack Nucleation and Propagation
,”
Theor. Appl. Fract. Mech.
,
6
(
2
), pp.
85
94
.
101.
Azari
,
Z.
,
Abbadi
,
M.
,
Moustabchir
,
H.
, and
Lebienvenu
,
M.
,
2008
, “
The Influence of Fatigue Cycling on the Oxidation Kinetics and Crack Initiation of a Cr-Mo Steel
,”
Int. J. Fatigue
,
30
(
3
), pp.
517
527
.
102.
Reger
,
M.
, and
Remy
,
L.
,
1988
, “
Fatigue Oxidation Interaction in in 100 Superalloy
,”
Metall. Trans. A
,
19
(
9
), pp.
2259
2268
.
103.
Jiang
,
R.
,
Ji
,
D. W.
,
Shi
,
H. C.
,
Hu
,
X. T.
,
Song
,
Y. D.
, and
Gan
,
B.
,
2019
, “
Effects of Thermal Exposure on High-Cycle-Fatigue Behaviours in Ni-Based Superalloy GH4169
,”
Mater. Sci. Technol.
,
35
(
10
), pp.
1265
1274
.
104.
Connolley
,
T.
,
Starink
,
M. J.
, and
Reed
,
P. A. S.
,
2000
, “
Effect of Oxidation on High Temperature Fatigue Crack Initiation and Short Crack Growth in Inconel 718
,”
Superalloys
,
5
(
2000
), pp.
435
444
.
105.
Antolovich
,
S. D.
,
2015
, “
Microstructural Aspects of Fatigue in Ni-Base Superalloys
,”
Philos. Trans. R. Soc., A
,
373
(
2038
), p.
20140128
.
106.
Li
,
S.
,
Li
,
J. Y.
,
Jiang
,
Z. W.
,
Cheng
,
Y.
,
Li
,
Y. Z.
,
Tang
,
S.
,
Leng
,
J. Z.
, et al
,
2022
, “
Controlling the Columnar-to-Equiaxed Transition During Directed Energy Deposition of Inconel 625
,”
Addit. Manuf.
,
57
, p.
102958
.
107.
Kim
,
D.
,
Jiang
,
R.
, and
Reed
,
P. A. S.
,
2023
, “
Microstructural and Oxidation Effects on Fatigue Crack Initiation Mechanisms in a Turbine Disc Alloy
,”
J. Mater. Sci.
,
58
(
4
), pp.
1869
1885
.
108.
Jiang
,
R.
,
Everitt
,
S.
,
Gao
,
N.
,
Soady
,
K.
,
Brooks
,
J. W.
, and
Reed
,
P. A. S.
,
2015
, “
Influence of Oxidation on Fatigue Crack Initiation and Propagation in Turbine Disc Alloy N18
,”
Int. J. Fatigue
,
75
, pp.
89
99
.
109.
Koul
,
S.
,
Zhou
,
L.
,
Ahmed
,
O.
,
Sohn
,
Y.
,
Jiang
,
T.
, and
Kushima
,
A.
,
2021
, “
In Situ TEM Characterization of Microstructure Evolution and Mechanical Behavior of the 3D-Printed Inconel 718 Exposed to High Temperature
,”
Microsc. Microanal.
,
27
(
2
), pp.
250
256
.
110.
Stopka
,
K. S.
,
Desrosiers
,
A.
,
Nicodemus
,
T.
,
Krutz
,
N.
,
Andreaco
,
A.
, and
Sangid
,
M. D.
,
2023
, “
Intentionally Seeding Pores in Additively Manufactured Alloy 718 : Process Parameters, Microstructure, Defects, and Fatigue
,”
Addit. Manuf.
,
66
, p.
103450
.
111.
Jang
,
J.
,
Yim
,
J.
, and
Lee
,
S. H.
,
2022
, “
Phase Formation Kinetics During Heat Treatments of Inconel 718 Deposits Based on Cold Metal Transfer-Based Wire Arc Additive Manufacturing
,”
Mater. Charact.
,
193
, p.
112294
.
112.
Sanviemvongsak
,
T.
,
Monceau
,
D.
, and
Macquaire
,
B.
,
2018
, “
High Temperature Oxidation of IN 718 Manufactured by Laser Beam Melting and Electron Beam Melting: Effect of Surface Topography
,”
Corros. Sci.
,
141
, pp.
127
145
.
You do not currently have access to this content.