This paper presents an efficient and novel computational protein prediction methodology called kineto-static compliance method. Successive kineto-static fold compliance is a methodology for predicting a protein molecule’s motion under the effect of an inter-atomic force field without the need for molecular-dynamic simulation. Instead, the chain complies under the kineto-static effect of the force field in such a manner that each rotatable joint changes by an amount proportional to the effective torque on that joint. This process successively iterates until all of the joint torques have converged to a minimum. This configuration is equivalent to a stable, globally optimized potential energy state of the system or, in other words, the final conformation of the protein. This methodology is implemented in a computer software package named PROTOFOLD. In this paper, we have used PROTOFOLD to predict the final conformation of a small peptide chain segment, an alpha helix, and the Triponin protein chains from a denatured configuration. The results show that torques in each joint are minimized to values very close to zero, which demonstrates the method’s effectiveness for protein conformation prediction.

1.
Pop
,
M.
, 1996, “
Protein Folding: Computational Challenges
,” (private communication).
2.
Anfinsen
,
C.
, 1973, “
Principles that govern the folding of protein chains
,”
Science
0036-8075,
181
, pp.
223
230
.
3.
Floudas
,
C. A.
,
Klepeis
,
J. L.
, and
Pardalos
,
P. M.
, 2000, “
Global Optimization Approaches in Protein Folding and Peptide Docking
,”
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
.
4.
Levinthal
,
C.
, 1968, “
Are there pathways in protein folding
?”
J. Chem. Phys.
0021-9606,
65
, pp.
44
45
.
5.
Güntert
,
P.
,
Mumenthaler
,
C.
, and
Wüthrich
,
K.
, 1997, “
Torsion Angle Dynamics for NMR Structure Calculation with the New Program DYANA
,”
J. Mol. Biol.
0022-2836,
273
(
1
), pp.
283
298
.
6.
Daggett
,
V.
,
Li
,
A. J.
, and
Fersht
,
A. R.
, 1998, “
Combined molecular dynamics and phi-value analysis of structure-reactivity relationships in the transition state and unfolding pathway of barnase: Structural basis of Hammond and anti-hammond effects
,”
J. Am. Chem. Soc.
0002-7863,
120
, pp.
12740
12754
.
7.
Field
,
M.
, 1999,
A practical introduction to the simulation of molecular systems
,
Cambridge University Press
, ISBN 052158129X, pp.
43
45
.
8.
Weiner
,
S.
,
Kollman
,
P.
,
Case
,
D.
,
Singh
,
U.
,
Ghio
,
C.
,
Alagona
,
G.
,
Profeta
,
S.
,
Weiner
,
P.
, 1984, “
A new force field for molecular mechanical simulation of nucleic acids and proteins
,”
J. Am. Chem. Soc.
0002-7863,
106
, pp.
765
784
.
9.
Cornell
,
W.
,
Cieplak
,
P.
,
Bayly
,
C.
,
Gould
,
I.
,
Merz
,
K.
,
Ferguson
,
D.
,
Spellmeyer
,
D.
,
Fox
,
T.
,
Caldwell
,
J.
,
Kollman
,
P.
, 1995, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
0002-7863,
117
, pp.
5179
5197
.
10.
Jorgensen
,
W. L.
, 1983, “
Theoretical studies of medium effects on conformational equilibria
,”
J. Phys. Chem.
0022-3654,
87
, pp.
5304
5314
.
11.
Brooks
,
B. R.
,
Bruccoleri
,
R. E.
,
Olafson
,
B. D.
,
States
,
D. J.
,
Swaminathan
,
S.
,
Karplus
,
M.
, 1983, “
CHARMM: A program for macromolecular energy, minimization, and dynamic calculations
,”
J. Comput. Chem.
0192-8651,
4
, pp.
187
217
.
12.
Hagler
,
A. T.
,
Ewig
,
C. S.
, 1994, “
On the use of quantum energy surfaces on the derivation of force fields
,”
Comput. Phys. Commun.
0010-4655,
84
, pp.
131
155
.
13.
Momany
,
F. A.
,
McGuire
,
R. F.
,
Burgess
,
A. W.
, and
Scheraga
,
H. A.
, 1975, “
Energy parameters in polypeptides VII, geometric parameters, partial charges, Nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials, for natural occurring amino acids
,”
J. Phys. Chem.
0022-3654,
79
, pp.
2361
2381
.
14.
Nemethy
,
G.
,
Pottle
,
M. S.
, and
Scheraga
,
H. A.
, 1983, “
Energy parameters in polypeptides, 9. Updating of geometrical parameters, nonbonding interactions, for natural occurring amino acids
,”
J. Phys. Chem.
0022-3654,
87
, pp.
1883
1887
.
15.
Van Gunsteren
,
W. F.
,
Daura
,
X.
, and
Mark
,
A. E.
, 1997, “
The GROMOS force field
,”
Encyclopedia of Computational Chemistry
.
16.
Allinger
,
N. L.
, 1977, “
Conformational analysis 130. A hydrocarbon force field utilizing VI and V2 torsional terms
,”
J. Am. Chem. Soc.
0002-7863,
99
, pp.
8127
8134
.
17.
Lii
,
J.-H.
and
Allinger
,
N. L.
, 1991, “
The MM3 force field for amides, polypeptides and proteins
,”
J. Comput. Chem.
0192-8651,
12
, pp.
186
199
.
18.
Allinger
,
N. L.
,
Chen
,
K.
, and
Lii
,
J.-H.
, 1996, “
An improved force field (MM4) for saturated hydrocarbons
,”
J. Comput. Chem.
0192-8651,
17
, pp.
642
668
.
19.
Halgren
,
T. A.
, 1996, “
Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94
,”
J. Comput. Chem.
0192-8651,
17
, pp.
490
519
.
20.
Halgren
,
T. A.
, 1996, “
Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions
,”
J. Comput. Chem.
0192-8651,
17
, pp.
520
552
.
21.
Halgren
,
T. A.
, 1996, “
Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94
,”
J. Comput. Chem.
0192-8651,
17
, pp.
553
586
.
22.
Halgren
,
T. A.
, 1996, “
Merck molecular force field. IV. Conformational energes and geometries
,”
J. Comput. Chem.
0192-8651,
17
, pp.
587
615
.
23.
Clark
,
M.
,
Cramer
, III,
R. D.
, and
van Opdenhosch
,
N.
, 1989, “
Validation of the general purpose Tripos 5.2 force field
,”
J. Comput. Chem.
0192-8651,
10
, pp.
982
1012
.
24.
Gundertofte
,
K.
,
Liljefors
,
T.
,
Norrby
,
P.
, and
Pettersson
,
I.
, 1996, “
A comparison of conformational energies calculated by several molecular mechanics methods
,”
J. Comput. Chem.
0192-8651,
17
,
4
, pp.
429
449
.
25.
Kazerounian
,
K.
and
Gupta
,
K. C.
, 1986, “
A Target Tracking Manipulation Theory for Robots
,”
The International Journal of Robotics and Automation
, Vol.
I
, No.
3
, 1986.
26.
Kazerounian
,
K.
,
Rodriguez
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
, 2004, “
ProtoFold: Nano-Kinematics for Analysis of Protein Molecules
,”
ASME J. Mech. Des.
1050-0472, Vol.
127
, 2005.
27.
Rappé
,
A.
and
Casewit
,
C. J.
, 1991, “
Molecular Mechanics Across Chemistry
,”
University Science Books
1997, pp.
101
103
.
You do not currently have access to this content.