In this paper, a novel nanoscale protein based nano actuator concept is described. Molecular kinematic computational tools are developed and included in our Matlab Biokinematics Toolbox to study the protein nanomotor’s performance using geometric criteria. The computational tools include the development of the molecular motor direct and inverse kinematics using the protein’s Denavit and Hartenberg parameters and the corresponding homogeneous transformation matrices. Furthermore, the workspace calculation and analysis of the protein motor is performed.
Issue Section:
Technical Papers
1.
Mavroidis
, C.
, Dubey
, A.
, and Yarmush
, M. L.
, 2004, “Molecular Machines
,” Ann. Biomed. Eng.
0090-6964, 6
, pp. 363
–395
.2.
Mavroidis
, C.
, and Dubey
, A.
, 2003, “Biomimetics: From Pulses to Motors
,” Nat. Mater.
1476-1122, 2
(9
), pp. 573
–574
.3.
Spudich
, J. A.
, 1994, “How Molecular Motors Work
,” Nature (London)
0028-0836, 372
(6506
), pp. 515
–518
.4.
Weissenhorn
, W.
, Dessen
, A.
, Calder
, L. J.
, Harrison
, S. C.
, Skehel
, J. J.
, and Wiley
, D. C.
, 1999, “Structural Basis for Membrane Fusion by Enveloped Viruses
,” Mol. Membr Biol.
0968-7688, 16
(1
), pp. 3
–9
.5.
Dubey
, A.
, Sharma
, G.
, Mavroidis
, C.
, Tomassone
, M. S.
, Nikitczuk
, K.
, and Yarmush
, M. L.
, 2004, “Computational Studies of Viral Protein Nano-Actuator
,” J. Theor. Comput. Nanosci.
, 1
(1
), pp. 1
–11
.6.
Kazerounian
, K.
, 2004, “From Mechanisms and Robotics to Protein Conformation and Drug Design
,” J. Mech. Des.
1050-0472, 126
, pp. 1
–6
.7.
8.
Wang
, M. D.
, Schnitzer
, M. J.
, Yin
, H.
, Landick
, J.
, and Block
, S. M.
, 1998, “Force and Velocity Measured for Single Molecules of RNA Polymerase
,” Science
0036-8075, 282
, pp. 902
–907
.9.
Sellers
, J. R.
, 2000, “Myosins: A Diverse Superfamily
,” Biochim. Biophys. Acta
0006-3002, 1496
(1
), pp. 3
–22
.10.
King
, S. M.
, 2000, “The Dynein Microtubule Motor
,” Biochim. Biophys. Acta
0006-3002, 1496
(1
), pp. 60
–75
.11.
Montemagno
, C. D.
, and Bachand
, G. D.
, 1999, “Constructing Nanomechanical Devices Powered by Biomolecular Motors
,” Nanotechnology
0957-4484, 10
, pp. 225
–331
.12.
Berg
, H. C.
, 1974, “Dynamic Properties of Bacterial Flagellar Motors
,” Nature (London)
0028-0836, 249
, pp. 77
–79
.13.
Schalley
, C. A.
, Beizai
, K.
, Vogtle
, F. K.
, 2001, “On the Way to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality
,” Acc. Chem. Res.
0001-4842, 34
, pp. 465
–476
.14.
Erickson
, H. P.
, 1997, “Stretching Single Protein Molecules: Titin is a Weird Spring
,” Science
0036-8075, 276
(5315
), pp. 1090
–1092
.15.
Mahadevan
, L.
, and Matsudaira
, P.
, 2000, “Motility Powered by Supramolecular Springs and Ratchets
,” Science
0036-8075, 288
(5463
), pp. 95
–100
.16.
Knoblauch
, M.
, Noll
, G. A.
, Muller
, T.
, Prufer
, D.
, Schneider-Huther
, I.
, Scharner
, D.
, Van Bel
, A. J.
, Peters
, W. S.
, 2003, “ATP-Independent Contractile Proteins from Plants
,” Nat. Mater.
1476-1122, 2
(9
), pp. 600
–603
.17.
Seeman
, N. C.
, and Belcher
, A. M.
, 2002, “Emulating Biology: Building Nanostructures from the Bottom Up
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 99
(90002
), pp. 6451
–6455
.18.
Yuqiu
, J.
, Juang
, C-B
, Keller
, D.
, Bustamante
, C.
, Beach
, D.
, Houseal
, T.
, Builes
, E.
, 1992, “Mechanical, Electrical, and Chemical Manipulation of Single DNA Molecules
,” Nanotechnology
0957-4484, 3
, pp. 16
–20
.19.
Yurke
, B.
, Turberfield
, A. J.
, Mills
, A. P.
, Simmel
, F. C.
, and Neumann
, J. L.
, 2000, “A DNA-Fuelled Molecular Machine Made of DNA
,” Nature (London)
0028-0836, 415
, pp. 62
–65
.20.
Teodoro
, M.
, Phillips
, G. N.
Jr., Kavraki
, L. E.
, 2001, “Molecular Docking: A Problem with Thousands of Degrees of Freedom
,” Proc. of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001)
, 960
–966
.21.
Finn
, P. W.
, Halperin
, D.
, Kavraki
, L. E.
, Latombe
, J.-C.
, Motwani
, R.
, Shelton
, C.
, Venkat
, S.
, 1996, “Geometric Manipulation of Flexible Ligands
,” Lecture Notes in Computer Science: Series Applied Computational Geometry-Towards Geometric Engineering
, 1148
, pp. 67
–78
.22.
Kim
, M. K.
, Chirikjian
, G. S.
, Jernigan
, R. L.
, 2002, “Elastic Models of Conformational Transitions in Macromolecules
,” J. Mol. Graphics Modell.
1093-3263, 21
, pp. 151
–160
.23.
Kim
, M. K.
, Jernigan
, R. L.
, and Chirikjian
, G. S.
, 2002, “Efficient Generation of Feasible Pathways for Protein Conformational Transitions
,” Biophys. J.
0006-3495, 83
(3
), pp. 1620
–1630
.24.
Finn
, P. W.
, K.
, L. E.
, 1999, “Computational Approaches to Drug Design
,” Algorithmica
0178-461725
, pp. 347
–371
.25.
LaValle
, S. M.
, Finn
, P. W.
, Kavraki
, L. E.
, Latombe
, J.-C.
, 2000, “A Randomized Kinematics-based Approach to Pharmacophore-Constrained Conformational Search and Database Screening
,” J. Comput. Chem.
0192-8651, 21
(9
), pp. 731
–747
.26.
Gardiner
, E. J.
, Willett
, P.
, Artymiuk
, P. J.
, 2000, “Graph-Theoretic Techniques for Macromolecular Docking
,” J. Chem. Inf. Comput. Sci.
0095-2338, 40
, pp. 273
–279
.27.
Jones
, G.
, Willett
, P.
, Glen
, R. C.
, Leach
, A. R.
, Taylor
, R.
, 1999, “Further Development of a Genetic Algorithm for Ligand Docking and its Application to Screening Combinatorial Libraries
,” ACS Symposium Series (Rational Drug Design: Novel Methodology and Practical Applications)
, 719
, pp. 271
–291
.28.
Lipton
, M.
, Still
, W.
, 1998, “The Multiple Minimum Problem in Molecular Modeling. Tree Searching Internal Coordinate Conformational Space
,” J. Comput. Chem.
0192-8651, 9
, pp. 343
–355
.29.
Smellie
, A.
, Kahn
, S. D.
, Teig
, S. L.
, 1995, “Analysis of Conformational Coverage-1. Validation and Estimation of Coverage
,” J. Chem. Inf. Comput. Sci.
0095-2338, 35
, pp. 285
–294
.30.
Zhang
, M.
, and Kavraki
, L.
, 2002, “A New Method for Fast and Accurate Derivation of Molecular Conformations
,” J. Chem. Inf. Comput. Sci.
0095-2338, 42
, pp. 64
–70
.31.
D.
Manocha
, Y.
Zhu
, and W.
Wright
, 1995, “Conformational Analysis of Molecular Chains Using Nano-Kinematics
,” CABIOS, Comput. Appl. Biosci.
0266-7061, 11
(1
), pp. 71
–86
.32.
I. Z.
Emiris
, B.
Mourrain
, 1999, “Computer Algebra Methods for Studying and Computing Molecular Conformations
,” Algorithmica
0178-4617, 25
, pp. 372
–402
.33.
Canutescu
, A. A.
, and Dunbrack
, R. L. J.
, 2003, “Cyclic Coordinate Descent: A Robotics Algorithm for Protein Loop Closure
,” Protein Sci.
0961-8368, 12
, pp. 963
–972
.34.
Baker
, K. A.
, Dutch
, R. E.
, Lamb
, R. A.
, and Jardetzky
, T. S.
, 1999, “Structural Basis for Paramyxovirus-Mediated Membrane Fusion
,” Mol. Cells
1016-8478, 3
(3
), pp. 309
–319
.35.
Wilson
, I. A.
, Skehel
, J. J.
, and Wiley
, D. C.
, 1981, “Structure of the Haemagglutinin Membrane Glycoprotein of Influenza Virus at 3A Resolution
,” Nature (London)
0028-0836, 289
(5796
), pp. 366
–373
.36.
Chan
, D. C.
, Fass
, D.
, Berger
, J. M.
, and Kim
, P. S.
, 1997, “Core Structure of gp41 from the HIV Envelope Glycoprotein
,” Cell
0092-8674, 89
(2
), pp. 263
–273
.37.
Carr
, C. M.
, Chaudhry
, C.
, and Kim
, P. S.
, 1997, “Influenza Hemagglutinin is Spring-Loaded by a Metastable Native Conformation
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 94
(26
), pp. 14306
–14313
.38.
Caffrey
, M.
, Cai
, M.
, Kaufman
, J.
, Stahl
, S. J.
, Wingfield
, P. T.
, Covell
, D. G.
, Gronenborn
, A. M.
, and Clore
, G. M.
, 1998, “Three-Dimensional Solution Structure of the 44kDa Ectodomain of SIV gp41
,” EMBO J.
0261-4189, 17
(16
), pp. 4572
–4584
.39.
Kobe
, B.
, Center
, R. J.
, Kemp
, B. E.
, and Poumbourios
, P.
, 1999, “Crystal Structure of Human T Cell Leukemia Virus Type 1 gp21 Ectodomain Crystallized as a Maltose-Binding Protein Chimera Reveals Structural Evolution of Retroviral Transmembrane Proteins
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 96
(8
), pp. 4319
–4324
.40.
Weissenhorn
, W.
, Calder
, L. J.
, Wharton
, S. A.
, Skehel
, J. J.
, and Wiley
, D. C.
, 1998, “The Central Structural Feature of the Membrane Fusion Protein Subunit from the Ebola Virus Glycoprotein is a Long Triple-Stranded Coiled Coil
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 95
(11
), pp. 6032
–6036
.41.
Carr
, C. M.
, and Kim
, P. S.
, 1993, “A Spring-Loaded Mechanism for the Conformational Change of Influenza Hemagglutinin
,” Cell
0092-8674, 73
(4
), pp. 823
–832
.42.
Berman
, H. M.
, Westbrook
, J.
, Feng
, Z.
, Gilliland
, G.
, Bhat
, T. N.
, Weissig
, H.
, Shindyalov
, I. N.
, and Bourne
, P. E.
, 2000, “The Protein Data Bank
,” Nucleic Acids Res.
0305-1048, 28
(1
), pp. 235
–242
.43.
Humphrey
, W.
, Dalke
, A.
, and Schulten
, K.
, 1996, “VMD: Visual Molecular Dynamics
,” J. Mol. Graphics
0263-7855, 14
(1
), pp. 33
–38
, 27–28.44.
Denavit
, J.
, and Hartenberg
, S.
, 1955, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,” ASME J. Appl. Mech.
0021-8936, 22
, pp. 215
–221
.45.
McCarthy
, J.
, 2000, Geometric Design of Linkages
, Springer Publications
, NY.46.
Wang
, L. C. T.
, C. C.
C.
, 1991, “A Combined Optimization Method for Solving the Inverse Kinematics Problem of Mechanical Manipulators
,” IEEE Trans. Rob. Autom.
1042-296X, 7
(4
), pp. 489
–499
.47.
Badescu
, M.
, and Mavroidis
, C.
, 2004, “New Performance Indices and Workspace Analysis of Reconfigurable Hyper-redundant Robotic Arms
,” Int. J. Robot. Res.
0278-3649, 23
, pp. 643
–659
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.