In this paper, a novel nanoscale protein based nano actuator concept is described. Molecular kinematic computational tools are developed and included in our Matlab Biokinematics Toolbox to study the protein nanomotor’s performance using geometric criteria. The computational tools include the development of the molecular motor direct and inverse kinematics using the protein’s Denavit and Hartenberg parameters and the corresponding homogeneous transformation matrices. Furthermore, the workspace calculation and analysis of the protein motor is performed.

1.
Mavroidis
,
C.
,
Dubey
,
A.
, and
Yarmush
,
M. L.
, 2004, “
Molecular Machines
,”
Ann. Biomed. Eng.
0090-6964,
6
, pp.
363
395
.
2.
Mavroidis
,
C.
, and
Dubey
,
A.
, 2003, “
Biomimetics: From Pulses to Motors
,”
Nat. Mater.
1476-1122,
2
(
9
), pp.
573
574
.
3.
Spudich
,
J. A.
, 1994, “
How Molecular Motors Work
,”
Nature (London)
0028-0836,
372
(
6506
), pp.
515
518
.
4.
Weissenhorn
,
W.
,
Dessen
,
A.
,
Calder
,
L. J.
,
Harrison
,
S. C.
,
Skehel
,
J. J.
, and
Wiley
,
D. C.
, 1999, “
Structural Basis for Membrane Fusion by Enveloped Viruses
,”
Mol. Membr Biol.
0968-7688,
16
(
1
), pp.
3
9
.
5.
Dubey
,
A.
,
Sharma
,
G.
,
Mavroidis
,
C.
,
Tomassone
,
M. S.
,
Nikitczuk
,
K.
, and
Yarmush
,
M. L.
, 2004, “
Computational Studies of Viral Protein Nano-Actuator
,”
J. Theor. Comput. Nanosci.
,
1
(
1
), pp.
1
11
.
6.
Kazerounian
,
K.
, 2004, “
From Mechanisms and Robotics to Protein Conformation and Drug Design
,”
J. Mech. Des.
1050-0472,
126
, pp.
1
6
.
7.
Block
,
S. M.
, 1998, “
Kinesin, What Gives?
Cell
0092-8674,
93
, pp.
5
8
.
8.
Wang
,
M. D.
,
Schnitzer
,
M. J.
,
Yin
,
H.
,
Landick
,
J.
, and
Block
,
S. M.
, 1998, “
Force and Velocity Measured for Single Molecules of RNA Polymerase
,”
Science
0036-8075,
282
, pp.
902
907
.
9.
Sellers
,
J. R.
, 2000, “
Myosins: A Diverse Superfamily
,”
Biochim. Biophys. Acta
0006-3002,
1496
(
1
), pp.
3
22
.
10.
King
,
S. M.
, 2000, “
The Dynein Microtubule Motor
,”
Biochim. Biophys. Acta
0006-3002,
1496
(
1
), pp.
60
75
.
11.
Montemagno
,
C. D.
, and
Bachand
,
G. D.
, 1999, “
Constructing Nanomechanical Devices Powered by Biomolecular Motors
,”
Nanotechnology
0957-4484,
10
, pp.
225
331
.
12.
Berg
,
H. C.
, 1974, “
Dynamic Properties of Bacterial Flagellar Motors
,”
Nature (London)
0028-0836,
249
, pp.
77
79
.
13.
Schalley
,
C. A.
,
Beizai
,
K.
,
Vogtle
,
F. K.
, 2001, “
On the Way to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality
,”
Acc. Chem. Res.
0001-4842,
34
, pp.
465
476
.
14.
Erickson
,
H. P.
, 1997, “
Stretching Single Protein Molecules: Titin is a Weird Spring
,”
Science
0036-8075,
276
(
5315
), pp.
1090
1092
.
15.
Mahadevan
,
L.
, and
Matsudaira
,
P.
, 2000, “
Motility Powered by Supramolecular Springs and Ratchets
,”
Science
0036-8075,
288
(
5463
), pp.
95
100
.
16.
Knoblauch
,
M.
,
Noll
,
G. A.
,
Muller
,
T.
,
Prufer
,
D.
,
Schneider-Huther
,
I.
,
Scharner
,
D.
,
Van Bel
,
A. J.
,
Peters
,
W. S.
, 2003, “
ATP-Independent Contractile Proteins from Plants
,”
Nat. Mater.
1476-1122,
2
(
9
), pp.
600
603
.
17.
Seeman
,
N. C.
, and
Belcher
,
A. M.
, 2002, “
Emulating Biology: Building Nanostructures from the Bottom Up
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
90002
), pp.
6451
6455
.
18.
Yuqiu
,
J.
,
Juang
,
C-B
,
Keller
,
D.
,
Bustamante
,
C.
,
Beach
,
D.
,
Houseal
,
T.
,
Builes
,
E.
, 1992, “
Mechanical, Electrical, and Chemical Manipulation of Single DNA Molecules
,”
Nanotechnology
0957-4484,
3
, pp.
16
20
.
19.
Yurke
,
B.
,
Turberfield
,
A. J.
,
Mills
,
A. P.
,
Simmel
,
F. C.
, and
Neumann
,
J. L.
, 2000, “
A DNA-Fuelled Molecular Machine Made of DNA
,”
Nature (London)
0028-0836,
415
, pp.
62
65
.
20.
Teodoro
,
M.
,
Phillips
,
G. N.
Jr.
,
Kavraki
,
L. E.
, 2001, “
Molecular Docking: A Problem with Thousands of Degrees of Freedom
,”
Proc. of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001)
,
960
966
.
21.
Finn
,
P. W.
,
Halperin
,
D.
,
Kavraki
,
L. E.
,
Latombe
,
J.-C.
,
Motwani
,
R.
,
Shelton
,
C.
,
Venkat
,
S.
, 1996, “
Geometric Manipulation of Flexible Ligands
,”
Lecture Notes in Computer Science: Series Applied Computational Geometry-Towards Geometric Engineering
,
1148
, pp.
67
78
.
22.
Kim
,
M. K.
,
Chirikjian
,
G. S.
,
Jernigan
,
R. L.
, 2002, “
Elastic Models of Conformational Transitions in Macromolecules
,”
J. Mol. Graphics Modell.
1093-3263,
21
, pp.
151
160
.
23.
Kim
,
M. K.
,
Jernigan
,
R. L.
, and
Chirikjian
,
G. S.
, 2002, “
Efficient Generation of Feasible Pathways for Protein Conformational Transitions
,”
Biophys. J.
0006-3495,
83
(
3
), pp.
1620
1630
.
24.
Finn
,
P. W.
,
K.
,
L. E.
, 1999, “
Computational Approaches to Drug Design
,”
Algorithmica
0178-4617
25
, pp.
347
371
.
25.
LaValle
,
S. M.
,
Finn
,
P. W.
,
Kavraki
,
L. E.
,
Latombe
,
J.-C.
, 2000, “
A Randomized Kinematics-based Approach to Pharmacophore-Constrained Conformational Search and Database Screening
,”
J. Comput. Chem.
0192-8651,
21
(
9
), pp.
731
747
.
26.
Gardiner
,
E. J.
,
Willett
,
P.
,
Artymiuk
,
P. J.
, 2000, “
Graph-Theoretic Techniques for Macromolecular Docking
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
40
, pp.
273
279
.
27.
Jones
,
G.
,
Willett
,
P.
,
Glen
,
R. C.
,
Leach
,
A. R.
,
Taylor
,
R.
, 1999, “
Further Development of a Genetic Algorithm for Ligand Docking and its Application to Screening Combinatorial Libraries
,”
ACS Symposium Series (Rational Drug Design: Novel Methodology and Practical Applications)
,
719
, pp.
271
291
.
28.
Lipton
,
M.
,
Still
,
W.
, 1998, “
The Multiple Minimum Problem in Molecular Modeling. Tree Searching Internal Coordinate Conformational Space
,”
J. Comput. Chem.
0192-8651,
9
, pp.
343
355
.
29.
Smellie
,
A.
,
Kahn
,
S. D.
,
Teig
,
S. L.
, 1995, “
Analysis of Conformational Coverage-1. Validation and Estimation of Coverage
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
35
, pp.
285
294
.
30.
Zhang
,
M.
, and
Kavraki
,
L.
, 2002, “
A New Method for Fast and Accurate Derivation of Molecular Conformations
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
42
, pp.
64
70
.
31.
D.
Manocha
,
Y.
Zhu
, and
W.
Wright
, 1995, “
Conformational Analysis of Molecular Chains Using Nano-Kinematics
,”
CABIOS, Comput. Appl. Biosci.
0266-7061,
11
(
1
), pp.
71
86
.
32.
I. Z.
Emiris
,
B.
Mourrain
, 1999, “
Computer Algebra Methods for Studying and Computing Molecular Conformations
,”
Algorithmica
0178-4617,
25
, pp.
372
402
.
33.
Canutescu
,
A. A.
, and
Dunbrack
,
R. L. J.
, 2003, “
Cyclic Coordinate Descent: A Robotics Algorithm for Protein Loop Closure
,”
Protein Sci.
0961-8368,
12
, pp.
963
972
.
34.
Baker
,
K. A.
,
Dutch
,
R. E.
,
Lamb
,
R. A.
, and
Jardetzky
,
T. S.
, 1999, “
Structural Basis for Paramyxovirus-Mediated Membrane Fusion
,”
Mol. Cells
1016-8478,
3
(
3
), pp.
309
319
.
35.
Wilson
,
I. A.
,
Skehel
,
J. J.
, and
Wiley
,
D. C.
, 1981, “
Structure of the Haemagglutinin Membrane Glycoprotein of Influenza Virus at 3A Resolution
,”
Nature (London)
0028-0836,
289
(
5796
), pp.
366
373
.
36.
Chan
,
D. C.
,
Fass
,
D.
,
Berger
,
J. M.
, and
Kim
,
P. S.
, 1997, “
Core Structure of gp41 from the HIV Envelope Glycoprotein
,”
Cell
0092-8674,
89
(
2
), pp.
263
273
.
37.
Carr
,
C. M.
,
Chaudhry
,
C.
, and
Kim
,
P. S.
, 1997, “
Influenza Hemagglutinin is Spring-Loaded by a Metastable Native Conformation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
26
), pp.
14306
14313
.
38.
Caffrey
,
M.
,
Cai
,
M.
,
Kaufman
,
J.
,
Stahl
,
S. J.
,
Wingfield
,
P. T.
,
Covell
,
D. G.
,
Gronenborn
,
A. M.
, and
Clore
,
G. M.
, 1998, “
Three-Dimensional Solution Structure of the 44kDa Ectodomain of SIV gp41
,”
EMBO J.
0261-4189,
17
(
16
), pp.
4572
4584
.
39.
Kobe
,
B.
,
Center
,
R. J.
,
Kemp
,
B. E.
, and
Poumbourios
,
P.
, 1999, “
Crystal Structure of Human T Cell Leukemia Virus Type 1 gp21 Ectodomain Crystallized as a Maltose-Binding Protein Chimera Reveals Structural Evolution of Retroviral Transmembrane Proteins
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
8
), pp.
4319
4324
.
40.
Weissenhorn
,
W.
,
Calder
,
L. J.
,
Wharton
,
S. A.
,
Skehel
,
J. J.
, and
Wiley
,
D. C.
, 1998, “
The Central Structural Feature of the Membrane Fusion Protein Subunit from the Ebola Virus Glycoprotein is a Long Triple-Stranded Coiled Coil
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
(
11
), pp.
6032
6036
.
41.
Carr
,
C. M.
, and
Kim
,
P. S.
, 1993, “
A Spring-Loaded Mechanism for the Conformational Change of Influenza Hemagglutinin
,”
Cell
0092-8674,
73
(
4
), pp.
823
832
.
42.
Berman
,
H. M.
,
Westbrook
,
J.
,
Feng
,
Z.
,
Gilliland
,
G.
,
Bhat
,
T. N.
,
Weissig
,
H.
,
Shindyalov
,
I. N.
, and
Bourne
,
P. E.
, 2000, “
The Protein Data Bank
,”
Nucleic Acids Res.
0305-1048,
28
(
1
), pp.
235
242
.
43.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
(
1
), pp.
33
38
, 27–28.
44.
Denavit
,
J.
, and
Hartenberg
,
S.
, 1955, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936,
22
, pp.
215
221
.
45.
McCarthy
,
J.
, 2000,
Geometric Design of Linkages
,
Springer Publications
, NY.
46.
Wang
,
L. C. T.
,
C. C.
C.
, 1991, “
A Combined Optimization Method for Solving the Inverse Kinematics Problem of Mechanical Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
4
), pp.
489
499
.
47.
Badescu
,
M.
, and
Mavroidis
,
C.
, 2004, “
New Performance Indices and Workspace Analysis of Reconfigurable Hyper-redundant Robotic Arms
,”
Int. J. Robot. Res.
0278-3649,
23
, pp.
643
659
.
You do not currently have access to this content.