Design optimization problems under random uncertainties are commonly formulated with constraints in probabilistic forms. This formulation, also referred to as reliability-based design optimization (RBDO), has gained extensive attention in recent years. Most researchers assume that reliability levels are given based on past experiences or other design considerations without exploring the constrained space. Therefore, inappropriate target reliability levels might be assigned, which either result in a null probabilistic feasible space or performance underestimations. In this research, we investigate the maximal reliability within a probabilistic constrained space using modified efficient global optimization (EGO) algorithm. By constructing and improving Kriging models iteratively, EGO can obtain a global optimum of a possibly disconnected feasible space at high reliability levels. An infill sampling criterion (ISC) is proposed to enforce added samples on the constraint boundaries to improve the accuracy of probabilistic constraint evaluations via Monte Carlo simulations. This limit state ISC is combined with the existing ISC to form a heuristic approach that efficiently improves the Kriging models. For optimization problems with expensive functions and disconnected feasible space, such as the maximal reliability problems in RBDO, the efficiency of the proposed approach in finding the optimum is higher than those of existing gradient-based and direct search methods. Several examples are used to demonstrate the proposed methodology.

1.
Allen
,
M.
, and
Maute
,
K.
, 2005, “
Reliability-Based Shape Optimization of Structures Undergoing Fluid-Structure Interaction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
3472
3495
.
2.
Huyse
,
L.
,
Padula
,
S.
,
Lewis
,
R.
, and
Li
,
W.
, 2002, “
Probabilistic Approach to Free-Form Airfoil Shape Optimization Under Uncertainty
,”
AIAA J.
0001-1452,
40
(
9
), pp.
1764
1772
.
3.
Gu
,
L.
,
Yang
,
R. -J.
,
Tho
,
C.
,
Makowski
,
M.
,
Faruque
,
O.
, and
Li
,
Y.
, 2001, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
0143-3369,
26
(
4
), pp.
348
360
.
4.
Chan
,
K. -Y.
,
Papalambros
,
P.
, and
Skerlos
,
S.
, 2010, “
A Method for Reliability-Based Optimization With Multiple Non-Normal Stochastic Parameters: A Simplified Airshed Management Study
,”
Stochastic Environ. Res. Risk Assess.
,
21
(
1
), pp.
101
116
.
5.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
6.
Kuo
,
W.
, and
Wan
,
R.
, 2007, “
Recent Advances in Optimal Reliability Allocation
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
37
(
2
), pp.
143
156
.
7.
Taflanidis
,
A.
, and
Beck
,
J.
, 2008, “
Stochastic Subset Optimization for Optimal Reliability Problems
,”
Probab. Eng. Mech.
0266-8920,
23
, pp.
324
338
.
8.
Royset
,
J.
,
Kiureghian
,
A.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Design of Series Structural Systems
,”
J. Eng. Mech.
0733-9399,
127
(
6
), pp.
607
614
.
9.
Royset
,
J.
,
Kiureghian
,
A.
, and
Polak
,
E.
, 2006, “
Optimal Design With Probabilistic Objective and Constraints
,”
J. Eng. Mech.
0733-9399,
132
(
1
), pp.
107
118
.
10.
Bichon
,
B.
,
Eldred
,
M.
,
Swiler
,
L.
,
Mahadevan
,
S.
, and
McFarland
,
J.
, 2008, “
Efficient Global Relaiblity Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
0001-1452,
46
(
10
), pp.
2459
2468
.
11.
Hasofer
,
A.
, and
Lind
,
N.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
, (EM1), pp.
111
121
.
12.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
0167-4730,
1
(
3
), pp.
177
188
.
13.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
366
.
14.
Fiessler
,
B.
,
Neumann
,
H. -J.
, and
Rackwitz
,
R.
, 1979, “
Quadratic Limit States in Structural Reliability
,”
J. Engrg. Mech. Div.
0044-7951,
105
(
4
), pp.
661
676
.
15.
Mitteau
,
J. -C.
, 1996, “
Error Estimates for FORM and SORM Computations of Failure Probability
,”
Proceedings of the Seventh Specialty Conference on Probabilistic Mechanics and Structural Reliability
, Aug. 7–9, ASCE, pp.
562
565
.
16.
Halton
,
J.
, 1970, “
Retrospective and Prospective Survey of the Monte Carlo Method
,”
SIAM Rev.
0036-1445,
12
(
1
), pp.
1
63
.
17.
Rief
,
H.
,
Gelbard
,
E.
,
Schaefer
,
R.
, and
Smith
,
K.
, 1986, “
Review of Monte Carlo Techniques for Analyzing Reactor Perturbations
,”
Nucl. Sci. Eng.
0029-5639,
92
(
2
), pp.
289
297
.
18.
Turner
,
J.
,
Wright
,
H.
, and
Hamm
,
R.
, 1985, “
A Monte Carlo Primer for Health Physicists
,”
Health Phys.
0017-9078,
48
(
6
), pp.
717
733
.
19.
Melchers
,
R.
, 2000,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
20.
Fishman
,
G.
, 1996,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer
,
New York
.
21.
Hofer
,
E.
, 1999, “
Sensitivity Analysis in the Context of Uncertainty Analysis for Computationally Intensive Models
,”
Comput. Phys. Commun.
0010-4655,
117
(
1–2
), pp.
21
34
.
22.
Jones
,
D.
,
Schonlau
,
M.
, and
Welch
,
W.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
23.
Schonlau
,
M.
,
Welch
,
W.
, and
Jones
,
D.
, 1998, “
Global Versus Local Search in Constrained Optimization of Computer Models
,”
New Developments and Applications in Experimental Design
,
N.
Flournoy
,
W.
Rosenberger
, and
W.
Wong
, eds.,
Institute of Mathematical Statistics
,
Beachwood, OH
.
24.
Schonlau
,
M.
, 1997, “
Computer Experiments and Global Optimization
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
25.
Sasena
,
M.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
26.
Jones
,
D.
,
Perttunen
,
C.
, and
Stuckman
,
B.
, 1993, “
Lip-Schitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
0022-3239,
79
(
1
), pp.
157
181
.
27.
Matheron
,
G.
, 1963, “
Principles of Geostatistics
,”
Econ. Geol.
0361-0128,
58
, pp.
1246
1266
.
28.
Chen
,
W.
,
Allen
,
J.
,
Schrage
,
D.
, and
Mistree
,
F.
, 1997, “
Statistical Experimentation Methods for Achieving Affordable Concurrent System Design
,”
AIAA J.
0001-1452,
35
(
5
), pp.
893
900
.
29.
Montgomery
,
D.
, 2005,
Design and Analysis of Experiments
, 6th ed.,
Wiley
,
Hoboken, NJ
.
30.
van Dam
,
E. R.
,
Husslage
,
B.
,
Hertog
,
D. D.
, and
Melis-sen
,
H.
, 2007, “
Maximin Latin Hypercube Designs in Two Dimensions
,”
Oper. Res.
0030-364X,
55
(
1
), pp.
158
169
.
31.
Sacks
,
J.
,
Schiller
,
S.
, and
Welch
,
W.
, 1989, “
Designs for Computer Experiments
,”
Technometrics
0040-1706,
31
(
1
), pp.
41
47
.
32.
Chilès
,
J. -P.
, and
Delfiner
,
P.
, 1999,
Geostatistics: Modeling Spatial Uncertainty
,
Wiley
,
New York
.
33.
Cressie
,
N.
, 1985, “
Fitting Variogram Models by Weighted Least Squares
,”
Math. Geol.
0882-8121,
17
(
5
), pp.
563
586
.
34.
Martin
,
J.
, 2009, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Des.
0161-8458,
131
(
8
), p.
084501
.
35.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
, 2008, “
A Kriging Meta-Model Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031401
.
36.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
(
416
), pp.
953
963
.
37.
Warnes
,
J.
, and
Ripley
,
B.
, 1987, “
Problems With Likelihood Estimation of Covariances Function of Spatial Gaussian Processes
,”
Biometrika
0006-3444,
74
(
3
), pp.
640
642
.
38.
Davis
,
G.
, and
Morris
,
M.
, 1997, “
Six Factors Which Affects the Condition Number of Matrices Associated With Kriging
,”
Math. Geol.
0882-8121,
29
(
5
), pp.
669
683
.
39.
Cressie
,
N.
, 1993,
Statistics for Spatial Data
,
Wiley
,
New York
.
40.
Au
,
S.
, and
Beck
,
J.
, 1999, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
135
158
.
41.
Papalambros
,
P.
, and
Wilde
,
D.
, 2000,
Principles of Optimal Design
, 2nd ed.,
Cambridge University Press
,
New York
.
42.
Dixon
,
L.
, and
Szegö
,
G.
, 1978,
Towards Global Optimisation 2
,
North-Holland
,
Amsterdam
.
43.
Gutmann
,
H.
, 2001, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
0925-5001,
19
, pp.
201
227
.
44.
Goel
,
T.
,
Haftka
,
R.
,
Shyy
,
W.
, and
Queipo
,
N.
, 2007, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
1615-147X,
33
, pp.
199
216
.
45.
Youn
,
B.
, and
Choi
,
K.
, 2004, “
An Investigation of Non-Linearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
403
411
.
46.
Chan
,
K. -Y.
,
Skerlos
,
S.
, and
Papalambros
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
0161-8458,
129
(
2
), pp.
140
149
.
47.
Zou
,
T.
,
Mourelatos
,
Z.
,
Mahadevan
,
S.
, and
Tu
,
J.
, 2008, “
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071401
.
48.
Merwade
,
V.
,
Maldment
,
D.
, and
Goff
,
J.
, 2006, “
Anisotropic Considerations While Interpolating River Channel Bathymetry
,”
J. Hydrol.
0022-1694,
331
(
3–4
), pp.
731
741
.
You do not currently have access to this content.