Abstract

Traditional reliability analysis generally uses probability approach to quantify the uncertainty, while it needs a great amount of information to construct precise distributions of the uncertain parameters. In this paper, a new reliability analysis technique is developed based on a hybrid uncertain model, which can deal with problems with limited information. All uncertain parameters are treated as random variables, while some of their distribution parameters are not given precise values but variation intervals. Due to the existence of the interval parameters, a limit-state strip enclosed by two bounding hyper-surfaces will be resulted in the transformed normal space, instead of a single hyper-surface as we usually obtain in conventional reliability analysis. All the limit-state strips are then summarized into two different classes and corresponding reliability analysis models are proposed for them. A monotonicity analysis is carried out for probability transformations of the random variables, through which effects of the interval distribution parameters on the limit state can be well revealed. Based on the monotonicity analysis, two algorithms are then formulated to solve the proposed hybrid reliability models. Three numerical examples are investigated to demonstrate the effectiveness of the present method.

References

1.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Engrg. Mech. Div.
,
100
(
EM1
), pp.
111
121
.
2.
Rackwitz
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
3.
Breitung
,
K.
, 1984, “
Asymptotic Approximation for Multinormal Integrals
,”
ASCE J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
4.
Polidori
,
D. C.
,
Beck
,
J. L.
, and
Papadimitriou
,
C.
, 1994, “
New Approximations for Reliability Integrals
,”
ASCE J. Eng. Mech.
,
125
(
4
), pp.
466
475
.
5.
Thoft-Christensen
,
P.
, and
Murotsu
,
Y.
, 1986,
Application of Structural Systems Reliability Theory
,
Springer-Verlag
,
Berlin
.
6.
Ang
,
A. H. S.
, and
Tang
,
W. H.
, 1984,
Probability Concepts in Engineering Planning and Design. Volume II: Decision, Risk and Reliability
,
John Wiley & Sons
,
New York
.
7.
Byeng
,
D. Y.
, and
Pingfeng
,
W.
, 2009, “
Complementary Intersection Method for System Reliability Analysis
,”
ASME J. Mech. Des.
,
131
(
4
), pp.
041004
041018
.
8.
Jiang
,
Z. H.
,
Shu
,
L. H.
, and
Benhabib
,
B.
, 1999, “
Steady-State Reliability Analysis of Repairable Systems Subject to System Modifications
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
614
621
.
9.
Kirjner-Neto
,
C.
,
Polak
,
E.
, and
Kiureghian
,
D.
, 1998, “
An Outer Approximations Approach to Reliability-Based Optimal Design of Structures
,”
J. Optim. Theory Appl.
,
98
(
1
), pp.
1
16
.
10.
Royset
,
J. O.
,
Kiureghian
,
A. D.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Structural Design by the Decoupling Approach
,”
Reliab. Eng. Syst. Saf.
,
73
, pp.
213
221
.
11.
Cheng
,
G. D.
,
Xu
,
L.
, and
Jiang
,
L.
, 2006, “
A Sequential Approximate Programming Strategy for Reliability-Based Structural Optimization
,”
Comput. Struct.
,
84
, pp.
1353
1367
.
12.
Liang
,
J. H.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
, pp.
1215
1224
.
13.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2007, “
Reliability Optimization With Mixed Continuous-Discrete Random Variables and Parameters
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
158
165
.
14.
Du
,
X. P.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
15.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
, 1990,
Convex Models of Uncertainties in Applied Mechanics
,
Elsevier Science Publisher
,
Amsterdam
.
16.
Ben-Haim
,
Y.
, 1994, “
A Non-Probabilistic Concept of Reliability
,”
Struct. Safety
,
14
(
4
), pp.
227
245
.
17.
Cao
,
H. J.
, and
Duan
,
B. Y.
, 2005, “
An Approach on the Non-Probabilistic Reliability of Structures Based on Uncertainty Convex Models
,”
Chinese J. Comput. Mech.
,
22
(
5
), pp.
546
549
.
18.
Luo
,
Y. J.
,
Kang
,
Z.
,
Luo
,
Z.
, and
Alex
,
L.
, 2008, “
Continuum Topology Optimization With Non-Probabilistic Reliability Constraints Based on Multi-Ellipsoid Convex Model
,”
Struct. Multidiscip. Optim.
,
39
(
3
), pp.
297
310
.
19.
Guo
,
X.
,
Bai
,
W.
, and
Zhang
,
W. S.
, 2009, “
Extremal Structural Response Analysis of Truss Structures Under Load Uncertainty via SDP Relaxation
,”
Comput. Struct.
,
87
, pp.
246
253
.
20.
Jiang
,
C.
,
Han
,
X.
, and
Liu
,
G. R.
, 2007, “
Optimization of Structures With Uncertain Constraints Based on Convex Model and Satisfaction Degree of Interval
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
4791
4800
.
21.
Guo
,
S. X.
, and
Lu
,
Z. Z.
, 2002, “
Hybrid Probabilistic and Non-Probabilistic Model of Structural Reliability
,”
Chinese J. Mech. Strength
,
24
(
4
), pp.
524
526
.
22.
Cheng
,
Y. S.
,
Zhong
,
Y. X.
, and
Zeng
,
G. W.
, 2005, “
Structural Robust Design Based on Hybrid Probabilistic and Non-Probabilistic Models
,”
Chin. J. Comput. Mech.
,
22
(
4
), pp.
501
505
.
23.
Du
,
X. P.
,
Sudjianto
,
A.
, and
Huang
,
B. Q.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2003)
, Chicage, IL.
24.
Du
,
X. P.
, 2007, “
Interval Reliability Analysis
,”
ASME 2007 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2007)
, Las Vegas, NV.
25.
Guo
,
J.
, and
Du
,
X. P.
, 2009, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
, pp.
1585
1617
.
26.
Du
,
X. P.
,
Venigella
,
P. K.
, and
Liu
,
D. S.
, 2009, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
, pp.
1321
1337
.
27.
Elishakoff
,
I.
, and
Colombi
,
P.
, 1993, “
Combination of Probabilistic and Convex Models of Uncertainty When Limited Knowledge is Present on Acoustic Excitation Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
104
, pp.
187
209
.
28.
Elishakoff
,
I.
,
Cai
,
G. Q.
, and
Starnes
,
J. H.
, 1994, “
Non-Linear Buckling of a Column With Initial Imperfections via Stochastic and Non-Stochastic Nonvex Models
,”
Int. J. Non-Linear Mech.
,
29
, pp.
71
82
.
29.
Zhu
,
L. P.
, and
Elishakoff
,
I.
, 1996, “
Hybrid Probabilistic and Convex Modeling of Excitation and Response of Periodic Structures
,”
Math. Probl. Eng.
,
2
, pp.
143
163
.
30.
Qiu
,
Z. P.
,
Yang
,
D.
, and
Elishakoff
,
I.
, 2008, “
Probabilistic Interval Reliability of Structural Systems
,”
Int. J. Solids Struct.
,
45
, pp.
2850
2860
.
31.
Jiang
,
C.
,
Li
,
W. X.
,
Han
,
X.
,
Liu
,
L. X.
, and
Le
,
P. H.
, 2011, “
Structural Reliability Analysis Based on Random Distributions With Interval Parameters
,”
Comput. Struct.
,
89
(
23–24
), pp.
2292
2302
.
32.
Zhou
,
J.
, and
Mourelatos
,
Z. P.
, 2008, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
,
130
, p.
011001
.
33.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006,
Non-Probabilistic Design Optimization With Insufficient Data Using Possibility and Evidence Theories
,
R. L.
Muhanna
, and
R. L.
Mullen
, eds.,
NSF Workshop on Reliable Engineering Computing
,
Savannah, GA
, pp.
391
418
.
34.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
, pp.
901
908
.
35.
Guo
,
J.
, and
Du
,
X. P.
, 2007, “
Sensitivity Analysis With Mixture of Epistemic and Aleatory Uncertainties
,”
AIAA J.
,
45
, pp.
2337
2349
.
36.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N.C.
, 1986,
Methods of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
37.
Du
,
X. P.
, 2008, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
, p.
0110011
.
You do not currently have access to this content.