Optimizing a disassembly process involves maximizing the number of disassembled valuable parts (cores) and minimizing the number of disassembly operations. Usually, some disassembly operations are in common among two or more cores, or sometimes removing a core requires prior removal of other cores (known as precedence relations); these correlations complicate the allocation of the disassembly cost to the cores. To overcome this complexity, the current optimization methods (decision trees) determine the optimum sequence of disassembly operations rather than the optimum set of cores to be disassembled. These methods become difficult to implement when the number of cores increases. In this paper, we developed a mechanized nongraphical approach to determine the optimum set of cores to be disassembled and their required disassembly operations based on the functionality statuses of the cores. This approach introduces a new characterization of the disassembly process and its precedence relations, and can be implemented conveniently using computer codes even when the product consists of many cores. The application of the method is explained with an example. Using this example, it was shown that the optimum disassembly can increase the net profit significantly compared with the complete disassembly.

References

1.
Guide
,
V. D. R.
, and
Van Wassenhove
,
L. N.
,
2001
, “
Managing Product Returns for Remanufacturing
,”
Prod. Oper. Manage.
,
10
(
2
), pp.
142
155
.10.1111/j.1937-5956.2001.tb00075.x
2.
Ghoreishi
,
N.
,
Jakiela
,
M. J.
, and
Nekouzadeh
,
A.
,
2011
, “
A Cost Model for Optimizing the Take Back Phase of Used Product Recovery
,”
J. Remanuf.
,
1
(
1
), pp.
1
15
.10.1186/2210-4690-1-1
3.
Ghoreishi
,
N.
,
Jakiela
,
M. J.
, and
Nekouzadeh
,
A.
,
2013
,
Reverse Supply Chains, Issues and Analysis, Taylor & Francis, CRC Press, A General Modeling Framework for Cost/Benefit Analysis of Remanufacturing
.
4.
Srivastava
,
S. K.
,
2008
, “
Network Design for Reverse Logistics
,”
Omega
,
36
(
4
), pp.
535
548
.10.1016/j.omega.2006.11.012
5.
Tang
,
Y.
,
Zhou
,
M. C.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2002
, “
Disassembly Modeling, Planning, and Application
,”
J. Manuf. Syst.
,
21
(
3
), pp.
200
217
.10.1016/S0278-6125(02)80162-5
6.
Yi
,
J. J.
,
Yu
,
B.
,
Du
,
L.
,
Li
,
C. G.
, and
Hu
,
D. Q.
,
2008
, “
Research on the Selectable Disassembly Strategy of Mechanical Parts Based on the Generalized CAD Model
,”
Int. J. Adv. Manuf. Technol.
,
37
(
5–6
), pp.
599
604
.10.1007/s00170-007-0990-3
7.
Srinivasan
,
H.
,
Figueroa
,
R.
, and
Gadh
,
R.
,
1999
, “
Selective Disassembly for Virtual Prototyping as Applied to De-Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
231
245
.10.1016/S0736-5845(99)00023-X
8.
Li
,
J. R.
,
Khoo
,
L. P.
, and
Tor
,
S. B.
,
2002
, “
A Novel Representation Scheme for Disassembly Sequence Planning
,”
Int. J. Adv. Manuf. Technol.
,
20
(
8
), pp.
621
630
.10.1007/s001700200199
9.
Mascle
,
C.
, and
Balasoiu
,
B. A.
,
2003
, “
Algorithmic Selection of a Disassembly Sequence of a Component by a Wave Propagation Method
,”
Rob. Comput.-Integr. Manuf.
,
19
(
5
), pp.
439
448
.10.1016/S0736-5845(03)00032-2
10.
Zhang
,
H. C.
, and
Kuo
,
T. C.
,
1996
,
A Graph Based Approach to Disassembly Model for End-of-Life Product Recycling
, Proceedings of the Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium,
Austin
,
TX
, pp.
247
254
.
11.
Zhang
,
H. C.
, and
Kuo
,
T. C.
,
1997
, “
A Graph-Based Disassembly Sequence Planning for Eol Product Recycling
,” Proceedings of the Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium,
Austin
,
TX
, pp.
140
151
.
12.
Siddique
,
Z.
, and
Rosen
,
D. W.
,
1997
, “
A Virtual Prototyping Approach to Product Disassembly Reasoning
,”
Comput. Aided Des.
,
29
(
12
), pp.
847
860
.10.1016/S0010-4485(97)00034-1
13.
Santochi
,
M.
,
Dini
,
G.
, and
Failli
,
F.
,
2002
, “
Computer Aided Disassembly Planning: State of the Art and Perspectives
,”
CIRP Ann. - Manuf. Technol.
,
51
(
2
), pp.
507
529
.10.1016/S0007-8506(07)61698-9
14.
Dong
,
T.
,
Zhang
,
L.
,
Tong
,
R.
, and
Dong
,
J.
,
2006
, “
A Hierarchical Approach to Disassembly Sequence Planning for Mechanical Product
,”
Int. J. Adv. Manuf. Technol.
,
30
, pp.
507
520
.10.1007/s00170-005-0036-7
15.
Beasley
,
D.
, and
Martin
,
R. R.
,
1993
, “
Disassembly Sequences for Objects Built From Unit Cubes
,”
Comput.-Aided Des.
,
25
(
12
), pp.
751
761
.10.1016/0010-4485(93)90102-T
16.
Bhatia
,
P.
,
Zalzala
,
A. M. S.
, and
Ghosh
,
A.
,
1996
, “
A Configuration Space Based Approach for Robotic Assembly Sequencing
,”
Robotica
,
14
(
06
), pp.
633
645
.10.1017/S0263574700018506
17.
Demoly
,
F.
,
Toussaint
,
L.
,
Eynard
,
B.
,
Kiritsis
,
D.
, and
Gomes
,
S.
,
2011
, “
Geometric Skeleton Computation Enabling Concurrent Product Engineering and Assembly Sequence Planning
,”
Comput.-Aided Des.
,
43
(
12
), pp.
1654
1673
.10.1016/j.cad.2011.09.006
18.
Gao
,
M. M.
,
Zhou
,
M. C.
, and
Caudill
,
R. J.
,
2002
, “
Integration of Disassembly Leveling and Bin Assignment for Demanufacturing Automation
,”
IEEE Trans. Rob. Autom.
,
18
(
6
), pp.
867
874
.10.1109/TRA.2002.805650
19.
Salomonski
,
N.
, and
Zussman
,
E.
,
1999
, “
On-Line Predictive Model for Disassembly Process Planning Adaptation
,”
Rob. Comput.-Integr. Manuf.
,
15
(
3
), pp.
211
220
.10.1016/S0736-5845(99)00019-8
20.
Zussman
,
E.
, and
Zhou
,
M. C.
,
1999
, “
A Methodology for Modeling and Adaptive Planning of Disassembly Processes
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
190
194
.10.1109/70.744614
21.
Hula
,
A.
,
Jalali
,
K.
,
Hamza
,
K.
,
Skerlos
,
S. J.
, and
Saitou
,
K.
,
2003
, “
Multi-Criteria Decision-Making for Optimization of Product Disassembly Under Multiple Situations
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5303
5313
.10.1021/es0345423
22.
Tang
,
Y.
, and
Zhou
,
M. C.
,
2006
, “
A Systematic Approach to Design and Operation of Disassembly Lines
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
324
330
.10.1109/TASE.2005.860989
23.
Lambert
,
A. J. D.
,
2002
, “
Determining Optimum Disassembly Sequences in Electronic Equipment
,”
Comput. Ind. Eng.
,
43
(
3
), pp.
553
575
.10.1016/S0360-8352(02)00125-0
24.
Güngör
,
A.
, and
Gupta
,
S. M.
,
2001
, “
A Solution Approach to the Disassembly Line Balancing Problem in the Presence of Task Failures
,”
Int. J. Prod. Res.
,
39
(
7
), pp.
1427
1467
.10.1080/00207540110052157
25.
Kazmierczak
,
K.
,
Winkel
,
J.
, and
Westgaard
,
R. H.
,
2004
, “
Car Disassembly and Ergonomics in Sweden: Current Situation and Future Perspectives in Light of New Environmental Legislation
,”
Int. J. Prod. Res.
,
42
(
7
), pp.
1305
1324
.10.1080/00207540310001624393
26.
Adenso-Díaz
,
B.
,
García-Carbajal
,
S.
, and
Gupta
,
S. M.
,
2008
, “
A Path-Relinking Approach for a Bi-Criteria Disassembly Sequencing Problem
,”
Comput. Oper. Res.
,
35
(
12
), pp.
3989
3997
.10.1016/j.cor.2007.06.002
27.
Güngör
,
A.
, and
Gupta
,
S. M.
,
2001
, “
Disassembly Sequence Plan Generation Using a Branch-and-Bound Algorithm
"
Int. J. Prod. Res.
,
39
(
3
), pp.
481
509
.10.1080/00207540010002838
28.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H. J.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
J. Mech. Des.
,
132
(
4
), p.
041002
.10.1115/1.4001207
29.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs under Uncertainty for Product Maintenance
,”
J. Mech. Des.
,
134
(
4
), p.
041011
.10.1115/1.4006262
30.
Cappelli
,
F.
,
Delogu
,
M.
,
Pierini
,
M.
, and
Schiavone
,
F.
,
2007
, “
Design for Disassembly: A Methodology for Identifying the Optimal Disassembly Sequence
,”
J. Eng. Des.
,
18
(
6
), pp.
563
575
.10.1080/09544820601013019
31.
Chen
,
S.-F.
,
Oliver
,
J. H.
,
Chou
,
S.-Y.
, and
Chen
,
L.-L.
,
1997
, “
Parallel Disassembly by Onion Peeling
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
267
274
.10.1115/1.2826246
32.
Giudice
,
F.
,
2010
, “
Disassembly Depth Distribution for Ease of Service: A Rule-Based Approach
,”
J. Eng. Des.
,
21
(
4
), pp.
375
411
.10.1080/09544820802282504
33.
Li
,
J. R.
,
Tor
,
S. B.
, and
Khoo
,
L. P.
,
2002
, “
A Hybrid Disassembly Sequence Planning Approach for Maintenance
,”
J. Comput. Inf. Sci. Eng.
,
2
(
1
), pp.
28
37
.10.1115/1.1481370
34.
Srinivasan
,
H.
, and
Gadh
,
R.
,
1998
, “
A Geometric Algorithm for Single Selective Disassembly Using the Wave Propagation Abstraction
,”
Comput.-Aided Des.
,
30
(
8
), pp.
603
613
.10.1016/S0010-4485(98)00009-8
35.
Wang
,
J. F.
,
Liu
,
J. H.
,
Li
,
S. Q.
, and
Zhong
,
Y. F.
,
2003
, “
Intelligent Selective Disassembly Using the Ant Colony Algorithm
,”
AI EDAM
,
17
(
04
), pp.
325
333
.
36.
Gupta
,
S. M.
, and
Taleb
,
K. N.
,
1994
, “
Scheduling Disassembly
,”
Int. J. Prod. Res.
,
32
(
8
), pp.
1857
1866
.10.1080/00207549408957046
37.
Taleb
,
K. N.
,
Gupta
,
S. M.
, and
Brennan
,
L.
,
1997
, “
Disassembly of Complex Product Structures With Parts and Materials Commonality
,”
Prod. Planning Control
,
8
(
3
), pp.
255
269
.10.1080/095372897235316
38.
Kim
,
H. J.
,
Ciupek
,
M.
,
Buchholz
,
A.
, and
Seliger
,
G.
,
2006
, “
Adaptive Disassembly Sequence Control by Using Product and System Information
,”
Rob. Comput.-Integr. Manuf.
,
22
(
3
), pp.
267
278
.10.1016/j.rcim.2005.06.003
39.
Tang
,
Y.
,
Zhou
,
M.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2000
, “
Disassembly Modeling, Planning and Application: A Review
Proceedings of the 2000 IEEE International Conference on Robotics and Automation,”
San Francisco
,
CA
,
3
, pp.
2197
2202
.
40.
Kim
,
H. J.
,
Chiotellis
,
S.
, and
Seliger
,
G.
,
2009
, “
Dynamic Process Planning Control of Hybrid Disassembly Systems
,”
Int. J. Adv. Manuf. Technol.
,
40
(
9–10
), pp.
1016
1023
.10.1007/s00170-008-1407-7
41.
Duflou
,
J. R.
,
Seliger
,
G.
,
Kara
,
S.
,
Umeda
,
Y.
,
Ometto
,
A.
, and
Willems
,
B.
,
2008
, “
Efficiency and Feasibility of Product Disassembly: A Case-Based Study
,”
CIRP Ann. - Manuf. Technol.
,
57
(
2
), pp.
583
600
.10.1016/j.cirp.2008.09.009
42.
Xanthopoulos
,
A.
, and
Iakovou
,
E.
,
2009
, “
On the Optimal Design of the Disassembly and Recovery Processes
,”
Waste Manage.
,
29
(
5
), pp.
1702
1711
.10.1016/j.wasman.2008.11.009
43.
Zikopoulos
,
C.
, and
Tagaras
,
G.
,
2008
, “
On the Attractiveness of Sorting Before Disassembly in Remanufacturing
,”
IIE Trans.
,
40
(
3
), pp.
313
323
.10.1080/07408170701488078
44.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
,
26
(
7
), pp.
505
520
.10.1016/0010-4485(94)90082-5
45.
Collado-Ruiz
,
D.
, and
Capuz-Rizo
,
S. F.
,
2010
, “
Modularity and Ease of Disassembly: Study of Electrical and Electronic Equipment
,”
J. Mech. Des.
,
132
(
1
), p.
014502
.10.1115/1.4000641
46.
Coutee
,
A. S.
,
Mcdermott
,
S. D.
, and
Bras
,
B.
,
2001
, “
A Haptic Assembly and Disassembly Simulation Environment and Associated Computational Load Optimization Techniques
,”
J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
113
122
.10.1115/1.1389085
47.
Sodhi
,
R.
,
Sonnenberg
,
M.
, and
Das
,
S.
,
2004
, “
Evaluating the Unfastening Effort in Design for Disassembly and Serviceability
,”
J. Eng. Des.
,
15
(
1
), pp.
69
90
.10.1080/0954482031000150152
48.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
J. Mech. Des.
,
132
(
9
), p.
091009
.10.1115/1.4002145
49.
Bourjault
,
A.
,
1984
, “
Contribution à Une Approche MéThodologique De L'assemblage Automatisé: ÉLaboration Automatique Des SéQuences OpéRatoires
,” Ph.D. thesis, Thèse de L'Université de Franche-Comté.
50.
Defazio
,
T. L.
, and
Whitney
,
D. E.
,
1987
, “
Simplified Generation of All Mechanical Assembly Sequences
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
640
658
.10.1109/JRA.1987.1087132
51.
Baldwin
,
D. F.
,
Abell
,
T. E.
,
Max Lui
,
M.-C.
,
Defazio
,
T. L.
, and
Whitney
,
D. E.
,
1991
, “
An Integrated Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products
,”
IEEE J. Rob. Autom.
,
7
(
1
), pp.
78
94
.10.1109/70.68072
52.
Choi
,
C. K.
,
Zha
,
X. F.
,
Ng
,
T. L.
, and
Lau
,
W. S.
,
1998
, “
On the Automatic Generation of Product Assembly Sequences
,”
Int. J. Prod. Res.
,
36
(
3
), pp.
617
633
.10.1080/002075498193606
53.
Gottipolu
,
R. B.
, and
Ghosh
,
K.
,
1997
, “
Representation and Selection of Assembly Sequences in Computer-Aided Assembly Process Planning
,”
Int. J. Prod. Res.
,
35
(
12
), pp.
3447
3465
.10.1080/002075497194183
54.
Chen
,
G.
,
Zhou
,
J.
,
Cai
,
W.
,
Lai
,
X.
,
Lin
,
Z.
, and
Menassa
,
R.
,
2006
, “
A Framework for an Automotive Body Assembly Process Design System
,”
Comput.-Aided Des.
,
38
(
5
), pp.
531
539
.10.1016/j.cad.2006.01.012
55.
Chen
,
K.-Z.
,
Feng
,
X.-A.
, and
Ding
,
L.
,
2002
, “
Intelligent Approaches for Generating Assembly Drawings From 3-D Computer Models of Mechanical Products
,”
Comput.-Aided Des.
,
34
(
5
), pp.
347
355
.10.1016/S0010-4485(01)00101-4
56.
Latombe
,
J.-C.
,
Wilson
,
R. H.
, and
Gazals
,
F.
,
1997
, “
Assembly Sequencing With Toleranced Parts
,”
Comput.-Aided Des.
,
29
(
2
), pp.
159
174
.10.1016/S0010-4485(96)00044-9
57.
Murayama
,
T.
,
Eguchi
,
T.
, and
Oba
,
F.
,
2006
, “
Mechatronics for Safety, Security and Dependability in a New Era
,”
Assembly Sequence Planning Using K-Nearest-Nieghbor Rule
,
Elsevier
,
Oxford
.
58.
Priyadarshi
,
A. K.
, and
Gupta
,
S. K.
,
2004
, “
Geometric Algorithms for Automated Design of Multi-Piece Permanent Molds
,”
Comput.-Aided Des.
,
36
(
3
), pp.
241
260
.10.1016/S0010-4485(03)00107-6
59.
Roy
,
U.
,
Banerjee
,
P.
, and
Liu
,
C. R.
,
1989
, “
Design of an Automated Assembly Environment
,”
Comput.-Aided Des.
,
21
(
9
), pp.
561
569
.10.1016/0010-4485(89)90017-1
60.
Sturges
,
R. H.
, Jr.
, and
Kilani
,
M. I.
,
1992
, “
Towards an Integrated Design for an Assembly Evaluation and Reasoning System
,”
Comput.-Aided Des.
,
24
(
2
), pp.
67
79
.10.1016/0010-4485(92)90001-Q
61.
Su
,
Q.
,
Lai
,
S.-J.
, and
Liu
,
J.
,
2009
, “
Geometric Computation Based Assembly Sequencing and Evaluating in Terms of Assembly Angle, Direction, Reorientation, and Stability
,”
Comput.-Aided Des.
,
41
(
7
), pp.
479
489
.10.1016/j.cad.2009.03.006
62.
Sung
,
R. C. W.
,
Corney
,
J. R.
, and
Clark
,
D. E. R.
,
2001
, “
Automatic Assembly Feature Recognition and Disassembly Sequence Generation
,”
J. Comput. Inf. Sci. Eng.
,
1
(
4
), pp.
291
299
.10.1115/1.1429931
63.
Ong
,
N. S.
, and
Wong
,
Y. C.
,
1999
, “
Automatic Subassembly Detection From a Product Model for Disassembly Sequence Generation
,”
Int. J. Adv. Manuf. Technol.
,
15
(
6
), pp.
425
431
.10.1007/s001700050086
64.
Kwak
,
M. J.
,
Hong
,
Y. S.
, and
Cho
,
N. W.
,
2009
, “
Eco-Architecture Analysis for End-of-Life Decision Making
,”
Int. J. Prod. Res.
,
47
(
22
), pp.
6233
6259
.10.1080/00207540802175329
65.
Kuo
,
T. C.
,
2000
, “
Disassembly Sequence and Cost Analysis for Electromechanical Products
,”
Rob. Comput.-Integr. Manuf.
,
16
(
1
), pp.
43
54
.10.1016/S0736-5845(99)00048-4
66.
Zussman
,
E.
,
Kriwet
,
G.
, and
Seliger
,
G.
,
1994
, “
Disassembly-Oriented Assessment Methodology to Support Design for Recycling
,”
Ann CIRP
,
43
(
1
), pp.
9
14
.10.1016/S0007-8506(07)62152-0
67.
Gu
,
P.
, and
Yan
,
X.
,
1996
, “
A Directed Automatic Assembly Sequence Planning
,”
Int. J. Prod. Res.
,
33
(
11
), pp.
3069
3100
.10.1080/00207549508904862
68.
Yokota
,
K.
, and
Brough
,
D. R.
,
1992
, “
Assembly/Disassembly Sequence Planning
,”
Assem. Autom.
,
12
(
3
), pp.
31
38
.10.1108/eb004372
69.
Ko
,
H.
, and
Lee
,
K.
,
1987
, “
Automatic Assembling Procedure Generation from Mating Conditions
,”
Comput.-Aided Des.
,
19
(
1
), pp.
3
10
.10.1016/0010-4485(87)90146-1
70.
Lee
,
Y. Q.
,
1993
, “
Automated Sequence Generation and Selection for Mechanical Assembly and Part Replacement
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
71.
Güngör
,
A.
, and
Gupta
,
S. M.
,
1998
, “
Disassembly Sequence Planning for Products With Defective Parts in Product Recovery
,”
Comput. Ind. Eng.
,
35
(
1–2
), pp.
161
164
.10.1016/S0360-8352(98)00047-3
72.
Lambert
,
A. J. D.
,
2003
, “
Disassembly Sequencing: A Survey
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.10.1080/0020754031000120078
73.
Tang
,
O.
,
Grubbstrom
,
R. W.
, and
Zanoni
,
S.
,
2004
, “
Economic Evaluation of Disassembly Processes in Remanufacturing Systems
,”
Int. J. Prod. Res.
,
42
(
17
), pp.
3603
3617
.10.1080/00207540410001699435
74.
Laperrière
,
L.
, and
Elmaraghy
,
H. A.
,
1992
, “
Planning of Products Assembly and Disassembly
,”
CIRP Ann. - Manuf. Technol.
,
41
(
1
), pp.
5
9
.10.1016/S0007-8506(07)61141-X
75.
Huang
,
Y. F.
, and
Lee
,
C. S. G.
,
1989
, “
Precedence Knowledge in Feature Mating Operation Assembly Planning
,”
Proceedings of 1989 IEEE International Conference on Robotics and Automation
, pp.
216
221
.
76.
Wolter
,
J. D.
,
Chakrabarty
,
S.
, and
Tsao
,
J.
,
1992
, “
Mating Constraint Languages for Assembly Sequence Planning
,”
Proceedings of 1992 IEEE International Conference on Robotics and Automation
, pp.
2367
2374
.
77.
Lee
,
Y. Q.
, and
Kumara
,
S. R. T.
,
1992
, “
Individual and Group Disassembly Sequence Generation Through Freedom and Interference Space
,”
J. Des. Manuf.
,
2
, pp.
143
154
.
78.
Rajan
,
V. N.
, and
Nof
,
S. Y.
,
1996
, “
Minimal Precedence Constraints for Integrated Assembly and Execution Planning
,”
IEEE Trans. Rob. Autom.
,
12
(
2
), pp.
175
186
.10.1109/70.488939
79.
Laperrière
,
L.
, and
Elmaraghy
,
H. A.
,
1996
, “
Gapp: A Generative Assembly Process Planner
,”
J. Manuf. Syst.
,
15
(
4
), pp.
282
293
.10.1016/0278-6125(96)84553-5
80.
Jabbour
,
T.
,
Mascle
,
C.
, and
Maranzana
,
R.
,
1998
, “
A Database for the Representation of Assembly Features in Mechanical Products
,”
Int. J. Comput. Geom. Appl.
,
8
(
5–6
), pp.
483
507
.10.1142/S0218195998000254
81.
Tiwari
,
M. K.
,
Sinha
,
N.
,
Kumar
,
S.
,
Rai
,
R.
, and
Mukhopadhyay
,
S. K.
,
2001
, “
A Petri Net Based Approach to Determine the Disassembly Strategy of a Product
,”
Int. J. Prod. Res.
,
40
(
5
), pp.
1113
1129
.10.1080/00207540110097176
82.
Rai
,
R.
,
Rai
,
V.
,
Tiwari
,
M. K.
, and
Allada
,
V.
,
2002
, “
Disassembly Sequence Generation: A Petri Net Based Heuristic Approach
,”
Int. J. Prod. Res.
,
40
(
13
), pp.
3183
3198
.10.1080/00207540210146116
83.
Kumar
,
S.
,
Kumar
,
R.
,
Shankar
,
R.
, and
Tiwari
,
M. K.
,
2003
, “
Expert Enhanced Coloured Stochastic Petri Net and Its Application in Assembly/Disassembly
,”
Int. J. Prod. Res.
,
41
(
12
), pp.
2727
2762
.10.1080/0020754021000042373
84.
Sarin
,
S. C.
,
Sherali
,
H. D.
, and
Bhootra
,
A.
,
2006
, “
A Precedence-Constrained Asymmetric Traveling Salesman Model for Disassembly Optimization
,”
IIE Trans.
,
38
(
3
), pp.
223
237
.10.1080/07408170500436740
85.
Zussman
,
E.
, and
Zhou
,
M. C.
,
2000
, “
Design and Implementation of an Adaptive Process Planner for Disassembly Processes
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
171
179
.10.1109/70.843173
86.
Moore
,
K. E.
,
Gungor
,
A.
, and
Gupta
,
S. M.
,
1998
, “
A Petri Net Approach to Disassembly Process Planning
,”
Comput. Ind. Eng.
,
35
(
1–2
), pp.
165
168
.10.1016/S0360-8352(98)00051-5
87.
Moore
,
K. E.
,
Güngör
,
A.
, and
Gupta
,
S. M.
,
2001
, “
Petri Net Approach to Disassembly Process Planning for Products With Complex and/or Precedence Relationships
,”
Eur. J. Oper. Res.
,
135
(
2
), pp.
428
449
.10.1016/S0377-2217(00)00321-0
88.
Tang
,
Y.
, and
Zhou
,
M.
,
2006
, “
Learning-Embedded Disassembly Petri Net for Process Planning
,” Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics,
Taipei
, pp.
80
84
.
89.
Turowski
,
M.
,
Tang
,
Y.
, and
Morgan
,
M.
,
2005
, “
Analysis of an Adaptive Fuzzy System for Disassembly Process Planning
,” Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment, pp.
249
254
.
90.
Looney
,
C. G.
,
1988
, “
Fuzzy Petri Nets for Rule-Based Decision-Making
,”
IEEE Trans. on Syst. Man Cybern.
,
18
(
1
), pp.
178
183
.10.1109/21.87067
91.
Huang
,
H. H. T.
,
Wang
,
M. H.
, and
Johnson
,
M. R.
,
2000
, “
Disassembly Sequence Generation Using a Neural Network Approach
,”
J. Manuf. Syst.
,
19
(
2
), pp.
73
82
.10.1016/S0278-6125(00)80001-1
92.
Galantucci
,
L. M.
,
Percoco
,
G.
, and
Spina
,
R.
,
2004
, “
Assembly and Disassembly Planning by Using Fuzzy Logic & Genetic Algorithms
,”
Int. J. Adv. Rob. Syst.
,
1
(
2
), pp.
67
74
.
93.
Teunter
,
R. H.
,
2006
, “
Determining Optimal Disassembly and Recovery Strategies
,”
Omega
,
34
(
6
), pp.
533
537
.10.1016/j.omega.2005.01.014
94.
Shimizu
,
Y.
,
Tsuji
,
K.
, and
Nomura
,
M.
,
2007
, “
Optimal Disassembly Sequence Generation Using a Genetic Programming
,”
Int. J. Produ. Res.
,
45
(
18–19
), pp.
4537
4554
.10.1080/00207540701440261
95.
Lazzerini
,
B.
, and
Marcelloni
,
F.
,
2000
, “
A Genetic Algorithm for Generating Optimal Assembly Plans
,”
Artif. Intell. Eng.
,
14
(
4
), pp.
319
329
.10.1016/S0954-1810(00)00011-X
96.
Kongar
,
E.
, and
Gupta
,
S. M.
,
2001
, “
Goal Programming Approach to the Remanufacturing Supply-Chain Model
,”
Proceedings of the SPIE international conference on environmentally conscious manufacturing
, pp.
167
178
.
97.
Kleber
,
R.
,
Minner
,
S.
, and
Kiesmuller
,
G.
,
2002
, “
A Continuous Time Inventory Model for a Product Recovery System With Multiple Options
,”
Int. J. Prod. Econ.
,
79
(
2
), pp.
121
141
.10.1016/S0925-5273(02)00256-6
98.
Guide
,
V. D. R.
,
Srivastava
,
R.
, and
Kraus
,
M.
,
1997
, “
Product Structure Complexity and Scheduling of Operations in Recoverable Manufacturing
,”
Int. J. Prod. Res.
,
35
(
11
), pp.
3179
3199
.10.1080/002075497194345
99.
Li
,
Y.
,
Chen
,
J.
, and
Cai
,
X.
,
2006
, “
Uncapacitated Product Planning With Multiple Product Types, Returned Product Remanufacturing, and Demand Substitution
,”
OR Spectr.
,
28
, pp.
101
125
.10.1007/s00291-005-0012-5
100.
Nakashima
,
K.
,
Arimitsu
,
H.
,
Nose
,
T.
, and
Kuriyama
,
S.
,
2004
, “
Cost Analysis of a Remanufacturing System
,”
Asia Pac. Manage. Rev.
,
9
(
4
), pp.
595
602
.
101.
Teunter
,
R.
, and
Van Der Laan
,
E.
,
2002
, “
On the Non-Optimality of the Average Cost Approach for Inventory Models With Remanufacturing
,”
Int. J. Prod. Econ.
,
79
(
1
), pp.
67
73
.10.1016/S0925-5273(00)00085-2
102.
Teunter
,
R. H.
,
2001
, “
A Reverse Logistics Valuation Method for Inventory Control
,”
Int. J. Prod. Res.
,
39
(
9
), pp.
2023
2035
.10.1080/00207540110043706
103.
Teunter
,
R. H.
,
Van Der Laan
,
E.
, and
Inderfurth
,
K.
,
2000
, “
How to Set the Holding Cost Rates in Average Cost Inventory Models With Reverse Logistics?
,”
Omega
,
28
(
4
), pp.
409
415
.10.1016/S0305-0483(99)00070-5
104.
Toktay
,
L. B.
,
Wein
,
L.
, and
Stefanos
,
Z.
,
2000
, “
Inventory Management of Remanufacturable Products
,”
Manage. Sci.
,
46
, pp.
1412
1426
.10.1287/mnsc.46.11.1412.12082
105.
Van Der Laan
,
E.
,
Salomon
,
M.
, and
Dekker
,
R.
,
1999
, “
Inventory Control in Hybrid Systems with Remanufacturing
,”
Manage. Sci.
,
45
, pp.
733
747
.10.1287/mnsc.45.5.733
106.
Van Der Laan
,
E. A.
, and
Salomon
,
M.
,
1997
, “
Production Planning and Inventory Control With Remanufacturing and Disposal
,”
Eur. J. Oper. Res.
,
102
, pp.
264
278
.10.1016/S0377-2217(97)00108-2
You do not currently have access to this content.