Abstract

The arc-toothed cylindrical worm has an arc tooth profile in a section, which may be the axial section, the normal section, or an offsetting plane of the worm helical surface. The meshing principle for a gearing containing such a worm is established. The normal vector of instantaneous contact line is determined in the natural frame and the meshing performance parameters are obtained without the help of the curvature parameters of the worm helical surface to ensure the established meshing principle is concise and practical. The numerical results show that the worm working length can be beyond half of the thread length and the meshing zone of the worm pair can cover most of the worm gear tooth surface. The instantaneous contact lines are uniformly distributed and the worm pair forms double-line contact. The numerical outcomes of the induced principal curvature show that the contact stress level between the teeth is higher in the middle of the worm gear tooth surface and near its dedendum. The forming condition of the lubricating oil film is poorer in the middle of the worm gear tooth surface and from addendum to dedendum as demonstrated by the numerical results of the sliding angle. The normal arc-toothed worm lathed by an offsetting cutter is recommended to apply in industry after various researches and analyses. The cutting geometric condition of the worm is investigated quantitatively. It is discovered that the rule of the cutter working relief angle changes along the cutting edge during lathing the worm.

References

1.
Watson
,
H. J.
,
1970
,
Modern Gear Production
,
Pergamon Press
,
New York
.
2.
Litvin
,
F. L.
,
1997
,
Development of Gear Technology and Theory of Gearing
,
NASA Reference Publication
,
Cleveland, OH
.
3.
Crosher
,
W.
,
2002
,
Design and Application of the Worm Gear
,
ASME Press
,
New York
.
4.
Wu
,
H.
,
Zhang
,
Y.
, and
Qi
,
L.
,
1986
,
Design of Worm Drive
, Vol.
1
,
Mechanical Industry Press
,
Beijing
.
5.
Radzevich
,
S. P.
,
2012
,
Dudley’s Handbook of Practical Gear Design and Manufacture
,
CRC Press, Taylor & Francis Group
,
New York
.
6.
Zhou
,
Z.
,
1993
,
Theory of Metal Cutting
,
Shanghai Science and Technology Press
,
Shanghai
.
7.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2000
,
Metal Cutting
, 4th ed.,
Elsevier Butterworth Heinemann
,
Woburn
.
8.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
, 2nd ed.,
Oxford University Press
,
New York
.
9.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2016
,
Metal Cutting Theory and Practice
, 3rd ed.,
CRC Press, Taylor & Francis Group
,
New York
.
10.
Radzevich
,
S. P.
,
2018
,
Gear Cutting Tools: Science and Engineering
, 2nd ed.,
CRC Press, Taylor & Francis Group
,
New York
.
11.
Meng
,
H.
,
2000
,
Handbook of Gear Design, 6th Chapter
,
China Machine Press
,
Beijing
.
12.
Yang
,
L.
,
1984
,
Circular Arc Tooth Cylindrical Worm Drive
,
Shanxi People’s Publishing House
,
Taiyuan
.
13.
Kawasaki
,
K.
, and
Tsuji
,
I.
,
2019
, “
Machining Method of Large-Sized Cylindrical Worm Gears With Niemann Profiles Using CNC Machining Center
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3717
3729
. 10.1007/s00170-019-04076-4
14.
Dudas
,
L.
,
2013
, “
Modelling and Simulation of a New Worm Gear Drive Having Point-Like Contact
,”
Eng. Comput.
,
29
(
3
), pp.
251
272
. 10.1007/s00366-012-0271-0
15.
Zhao
,
Y.
,
Kong
,
J.
,
Li
,
G.
, and
Wu
,
T.
,
2011
, “
Tooth Flank Modification Theory of Dual-Torus Double-Enveloping Hourglass Worm Drives
,”
Comput.-Aided Des.
,
43
(
12
), pp.
1535
1544
. 10.1016/j.cad.2011.06.024
16.
Batsch
,
M.
,
2020
, “
Mathematical Model and Tooth Contact Analysis of Convexo-Concave Helical Bevel Novikov Gear Mesh
,”
Mech. Mach. Theory
,
149
, p.
103842
. 10.1016/j.mechmachtheory.2020.103842
17.
Rui
,
C.
,
Li
,
H.
,
Yang
,
J.
,
Wei
,
W.
, and
Dong
,
X.
,
2018
, “
A Designing and Generating Method for Grinding Relief Surfaces of a Dual-Cone Double-Enveloping Hourglass Worm Gear hob
,”
ASME J. Mech. Des.
,
140
(
12
), p.
123301
. 10.1115/1.4041053
18.
Yang
,
J.
,
Li
,
H.
,
Rui
,
C.
,
Wei
,
W.
, and
Dong
,
X.
,
2018
, “
A Method to Generate the Spiral Flutes of an Hourglass Worm Gear Hob
,”
ASME J. Mech. Des.
,
140
(
6
), p.
063301
. 10.1115/1.4039769
19.
Wang
,
S.
,
1991
,
Circular Arc Cylindrical Worm Drive
,
Tianjin University Press
,
Tianjin
.
20.
Dudas
,
I.
,
2000
,
The Theory and Practice of Worm Gear Drives
,
Penton Press
,
London
.
21.
Zhao
,
Y.
, and
Zhang
,
Y.
,
2013
, “
Determination of the Most Dangerous Meshing Point for Modified-Hourglass Worm Drives
,”
ASME J. Mech. Des.
,
135
(
3
), p.
034503
. 10.1115/1.4023281
22.
Chen
,
H.
,
Duan
,
Z.
,
Wu
,
H.
, and
Liu
,
J.
,
2006
, “
Study on the General Principle of Normal Circular-Arc Gear Transmission
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1424
1442
. 10.1016/j.mechmachtheory.2006.01.016
23.
Dong
,
X.
,
1989
,
Foundation of Meshing Theory for Gear Drives
,
China Machine Press
,
Beijing
.
24.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
25.
Deng
,
X.
,
Wang
,
J.
, and
Wang
,
S.
,
2019
, “
Investigation on the Backlash of Roller Enveloping Hourglass Worm Gear: Theoretical Analysis and Experiment
,”
ASME J. Mech. Des.
,
141
(
3
), p.
053302
. 10.1115/1.4042155
26.
Chen
,
Z.
,
Zeng
,
M.
, and
Fuentes
,
A.
,
2020
, “
Geometric Design, Meshing Simulation, and Stress Analysis of Pure Rolling Rack and Pinion Mechanisms
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031122
. 10.1115/1.4044954
27.
Zhao
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Computing Method for Induced Curvature Parameters Based on Normal Vector of Instantaneous Contact Line and Its Application to Hindley Worm Pair
,”
Adv. Mech. Eng.
,
9
(
10
), pp.
1
15
. 10.1177/1687814017721884
28.
Zhao
,
Y.
, and
Kong
,
X.
,
2018
, “
Meshing Principle of Conical Surface Enveloping Spiroid Drive
,”
Mech. Mach. Theory
,
123
, pp.
1
26
. 10.1016/j.mechmachtheory.2018.01.012
29.
Dong
,
X.
,
2004
,
Design and Modification of Hourglass Worm Drives
,
China Machine Press
,
Beijing
.
30.
Zhao
,
Y.
,
2019
, “
Meshing Theory of ZC1 Worm Drive
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
10
,
Paper No. DETC2019-97578
.
You do not currently have access to this content.