Abstract

Multi-fidelity surrogate modeling has been extensively used in engineering design to achieve a balance between computational efficiency and prediction accuracy. Sequential sampling strategies have been investigated to improve the computational efficiency of surrogate-assisted design optimization. The existing sequential sampling approaches, however, are dedicated to either deterministic multi-fidelity design optimization or robust design under uncertainty using single-fidelity models. This paper proposes a sequential sampling method for robust design optimization based on multi-fidelity modeling. The proposed method considers both design variable uncertainty and interpolation uncertainty during the sequential sampling. An extended upper confidence boundary (EUCB) function is developed to determine both the sampling locations and the fidelity levels of the sequential samples. In the EUCB function, the cost ratio between high- and low-fidelity models and the sampling density are considered. Moreover, the EUCB function is extended to handle constrained robust design optimization problems by combining the probability of feasibility. The performance of the proposed approach is verified using two analytical examples and an engineering case. Results show that the proposed sequential approach is more efficient than the one-shot sampling method for robust design optimization problems.

References

1.
Zhang
,
Y.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111405
.
2.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Methods Eng.
,
26
(
1
), pp.
245
274
.
3.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.
4.
Xia
,
T.
,
Li
,
M.
, and
Zhou
,
J.
,
2016
, “
A Sequential Robust Optimization Approach for Multidisciplinary Design Optimization With Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111406
.
5.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
521
530
.
6.
Jun
,
T.
,
Gang
,
S.
,
Liqiang
,
G.
, and
Xinyu
,
W.
,
2020
, “
Application of a PCA-DBN-Based Surrogate Model to Robust Aerodynamic Design Optimization
,”
Chin. J. Aeronaut.
,
33
(
6
), pp.
1573
1588
.
7.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.
8.
Diez
,
M.
, and
Peri
,
D.
,
2010
, “
Robust Optimization for Ship Conceptual Design
,”
Ocean Eng.
,
37
(
11–12
), pp.
966
977
.
9.
Ma
,
B.
,
Zheng
,
J.
,
Zhu
,
J.
,
Wu
,
J.
,
Lei
,
G.
, and
Guo
,
Y.
,
2020
, “
Robust Design Optimization of Electrical Machines Considering Hybrid Random and Interval Uncertainties
,”
IEEE Trans. Power Appar. Syst.
,
35
(
4
), pp.
1815
1824
.
10.
Lee
,
S. H.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
239
253
.
11.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P.
,
2013
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscipl. Optim.
,
47
(
1
), pp.
63
76
.
12.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
13.
Lv
,
L.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Multi-Fidelity Surrogate Model Based on Canonical Correlation Analysis and Least Squares
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021705
.
14.
Yoo
,
K.
,
Bacarreza
,
O.
, and
Aliabadi
,
M. F.
,
2021
, “
Multi-Fidelity Robust Design Optimisation for Composite Structures Based on Low-Fidelity Models Using Successive High-Fidelity Corrections
,”
Compos. Struct.
,
259
, p.
113477
.
15.
Tao
,
J.
, and
Sun
,
G.
,
2019
, “
Application of Deep Learning Based Multi-Fidelity Surrogate Model to Robust Aerodynamic Design Optimization
,”
Aerosp. Sci. Technol.
,
92
, pp.
722
737
.
16.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S.-K.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2018
, “
A Robust Optimization Approach Based on Multi-Fidelity Metamodel
,”
Struct. Multidiscipl. Optim.
,
57
(
2
), pp.
775
797
.
17.
Xu
,
C.
,
Zhu
,
P.
, and
Liu
,
Z.
,
2021
, “
Sequential Sampling Framework for Metamodeling Uncertainty Reduction in Multilevel Optimization of Hierarchical Systems
,”
ASME J. Mech. Des.
,
143
(
10
), p.
101701
.
18.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
,
2003
, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscipl. Optim.
,
25
(
2
), pp.
99
116
.
19.
Qian
,
J.
,
Yi
,
J.
,
Cheng
,
Y.
,
Liu
,
J.
, and
Zhou
,
Q.
,
2020
, “
A Sequential Constraints Updating Approach for Kriging Surrogate Model-Assisted Engineering Optimization Design Problem
,”
Eng. Comput.
,
36
(
3
), pp.
993
1009
.
20.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.
21.
Zhang
,
Y.
,
Han
,
Z.-H.
, and
Zhang
,
K.-S.
,
2018
, “
Variable-Fidelity Expected Improvement Method for Efficient Global Optimization of Expensive Functions
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1431
1451
.
22.
Jiang
,
P.
,
Cheng
,
J.
,
Zhou
,
Q.
,
Shu
,
L.
, and
Hu
,
J.
,
2019
, “
Variable-Fidelity Lower Confidence Bounding Approach for Engineering Optimization Problems With Expensive Simulations
,”
AIAA J.
,
57
(
12
), pp.
5416
5430
.
23.
Ruan
,
X.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Hu
,
J.
, and
Shu
,
L.
,
2020
, “
Variable-Fidelity Probability of Improvement Method for Efficient Global Optimization of Expensive Black-Box Problems
,”
Struct. Multidiscipl. Optim.
,
62
(
6
), pp.
3021
3052
.
24.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
.
25.
Zhang
,
S.
,
Zhu
,
P.
,
Arendt
,
P. D.
, and
Chen
,
W.
,
2013
, “
Extended Objective-Oriented Sequential Sampling Method for Robust Design of Complex Systems Against Design Uncertainty
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15, 2012
,
American Society of Mechanical Engineers
, pp.
1237
1246
.
26.
Han
,
Z.-H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
27.
Liu
,
Y.
,
Li
,
K.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-Fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
28.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
29.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. Lond. Ser. A
,
463
(
2088
), pp.
3251
3269
.
30.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
31.
Patrick
,
B.
,
1995
,
Probability and Measure
,
John Wiley
,
New York
.
32.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M. W.
,
2012
, “
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting
,”
IEEE Trans. Inf. Theory
,
58
(
5
), pp.
3250
3265
.
33.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
34.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-Validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
581
605
.
35.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscipl. Optim.
,
32
(
5
), pp.
369
382
.
36.
Li
,
X.
,
Qiu
,
H.
,
Jiang
,
Z.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
A VF-SLP Framework Using Least Squares Hybrid Scaling for RBDO
,”
Struct. Multidiscipl. Optim.
,
55
(
5
), pp.
1629
1640
.
37.
Qian
,
J.
,
Cheng
,
Y.
,
Zhang
,
A.
,
Zhou
,
Q.
, and
Zhang
,
J.
,
2021
, “
Optimization Design of Metamaterial Vibration Isolator With Honeycomb Structure Based on Multi-Fidelity Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
423
439
.
You do not currently have access to this content.