Abstract

The design for additive manufacturing (DFAM) processing was introduced to fully utilize the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilization to produce AM parts, and theory of inventive problem-solving (TRIZ) is a strategy used to formalize design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergizing TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.

References

1.
Deja
,
M.
, and
Siemiatkowski
,
M. S.
,
2018
, “
Machining Process Sequencing and Machine Assignment in Generative Feature-Based CAPP for Mill-Turn Parts
,”
J. Manuf. Syst.
,
48
, pp.
49
62
.
2.
Kleer
,
R.
,
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
(
C
), pp.
43
56
.
3.
Wiberg
,
A.
,
Persson
,
J.
, and
Ölvander
,
J.
,
2019
, “
Design for Additive Manufacturing—A Review of Available Design Methods and Software
,”
Rapid Prototyp. J.
,
25
(
6
), pp.
1080
1094
.
4.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing-Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
5.
Pradel
,
P.
,
Zhu
,
Z.
,
Bibb
,
R.
, and
Moultrie
,
J.
,
2018
, “
A Framework for Mapping Design for Additive Manufacturing Knowledge for Industrial and Product Design
,”
J. Eng. Des.
,
29
(
6
), pp.
291
326
.
6.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
.
7.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
. .
8.
Deja
,
M.
,
Dobrzyński
,
M.
,
Flaszyński
,
P.
,
Haras
,
J.
, and
Zieliński
,
D.
,
2018
, “
Application of Rapid Prototyping Technology in the Manufacturing of Turbine Blade With Small Diameter Holes
,”
Pol. Marit. Res.
,
25
(
s1
), pp.
119
123
.
9.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
P. R.
,
Vihinen
,
J.
, and
Ellman
,
A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081101
. .
10.
Deja
,
M.
,
Siemiatkowski
,
D.
, and
Zielinski
,
D.
,
2020
, “
Multi Criteria Comparative Analysis of the Use of Subtractive and Additive Technologies in the Manufacturing of Offshore Machinery Components
,”
Pol. Marit. Res.
,
27
(
3
), pp.
71
81
.
11.
Lin
,
S. Y.
, and
Wu
,
C. T.
,
2016
, “
Application of TRIZ Inventive Principles to Innovate Recycling Machine
,”
Adv. Mech. Eng.
,
8
(
5
), pp.
1
8
.
12.
Ilevbare
,
I. M.
,
Probert
,
D.
, and
Phaal
,
R.
,
2013
, “
A Review of TRIZ, and Its Benefits and Challenges in Practice
,”
Technovation
,
33
(
2–3
), pp.
30
37
.
13.
Lin
,
Y. S.
, and
Chen
,
M.
,
2021
, “
Implementing TRIZ With Supply Chain Management in New Product Development for Small and Medium Enterprises
,”
Processes
,
9
(
4
), pp.
1
15
.
14.
Spreafico
,
C.
, and
Russo
,
D.
,
2016
, “
TRIZ Industrial Case Studies: A Critical Survey
,”
Procedia CIRP
,
39
, pp.
51
56
.
15.
Renjith
,
S. C.
,
Park
,
K.
, and
Okudan Kremer
,
G. E.
,
2020
, “
A Design Framework for Additive Manufacturing: Integration of Additive Manufacturing Capabilities in the Early Design Process
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
329
345
.
16.
Kretzschmar
,
N.
, and
Chekurov
,
S.
,
2018
, “
The Applicability of the 40 TRIZ Principles in Design for Additive Manufacturing
,”
Proceedings of the 29th DAAAM International Symposium
[Ann. DAAAM Proc.,
29
(
1
), pp.
888
893
].
17.
Kamps
,
T.
,
Gralow
,
M.
,
Schlick
,
G.
, and
Reinhart
,
G.
,
2017
, “
Systematic Biomimetic Part Design for Additive Manufacturing
,”
Procedia CIRP
,
65
, pp.
259
266
.
18.
Motyl
,
B.
, and
Filippi
,
S.
,
2020
, “Investigating the Relationships Between Additive Manufacturing and TRIZ: Trends and Perspectives,”
Lecture Notes in Mechanical Engineering
, Vol.
1
,
C.
Rizzi
,
A. O.
Andrisano
,
F.
Leali
,
F.
Gherardini
, and
P. F.
Vergnano
, eds.,
Springer
,
Modena, Italy
, pp.
903
911
.
19.
Floriane
,
L.
,
Frédéric
,
S.
,
Gianluca
,
D. A.
, and
Marc
,
L. C.
,
2017
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: A Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(
2
), pp.
279
288
.
20.
Boyard
,
N.
,
Christmann
,
O.
,
Richir
,
S.
,
Boyard
,
N.
,
Christmann
,
O.
, and
Richir
,
S.
,
2013
, “
A Design Methodology for Parts Using Additive Manufacturing
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Oct. 1–5
, pp.
1
6
.
21.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031121
.
22.
Horst
,
D.
,
Duvoisin
,
C.
, and
Vieira
,
R.
,
2018
, “
Additive Manufacturing at Industry 4.0: A Review
,”
Int. J. Eng. Technol. Res.
,
8
(
8
), pp.
3
8
.
23.
Briard
,
T.
,
Segonds
,
F.
, and
Zamariola
,
N.
,
2020
, “
G-DfAM: A Methodological Proposal of Generative Design for Additive Manufacturing in the Automotive Industry
,”
Int. J. Interact. Des. Manuf.
,
14
(
3
), pp.
875
886
.
24.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(
1
), pp.
632
637
.
25.
Salonitis
,
K.
,
2016
, “
Design for Additive Manufacturing Based on the Axiomatic Design Method
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
989
996
.
26.
Maidin
,
S. B.
,
Campbell
,
I.
, and
Pei
,
E.
,
2012
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing
,”
Assem. Autom.
,
32
(
3
), pp.
235
244
.
27.
Rias
,
A. L.
,
Bouchard
,
C.
,
Segonds
,
F.
,
Vayre
,
B.
, and
Abed
,
S.
,
2017
, “
Design for Additive Manufacturing: Supporting Intrinsic-Motivated Creativity
,”
Emot. Eng.
,
5
, pp.
99
115
.
28.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
29.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation : Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
30.
Klahn
,
C.
,
Leutenecker
,
B.
, and
Meboldt
,
M.
,
2014
, “
Design for Additive Manufacturing—Supporting the Substitution of Components in Series Products
,”
Procedia CIRP
,
21
, pp.
138
143
.
31.
Rias
,
A. L.
,
Bouchard
,
C.
,
Segonds
,
F.
, and
Abed
,
S.
,
2016
, “
Design for Additive Manufacturing: A Creative Approach
,”
Proceedings of International Design Conference, DESIGN
,
Dubrovnik, Croatia
,
May 16–19
, pp.
411
420
.
32.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2019
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021703
.
33.
Chekurov
,
S.
,
Wang
,
M.
,
Salmi
,
M.
, and
Partanen
,
J.
,
2020
, “
Development, Implementation, and Assessment of a Creative Additive Manufacturing Design Assignment: Interpreting Improvements in Student Performance
,”
Educ. Sci.
,
10
(
6
), pp.
1
17
.
34.
Prabhu
,
R.
,
Bracken
,
J.
,
Armstrong
,
C. B.
,
Jablokow
,
K.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Additive Creativity: Investigating the Use of Design for Additive Manufacturing to Encourage Creativity in the Engineering Design Industry
,”
Int. J. Des. Creat. Innov.
,
8
(
4
), pp.
198
222
.
35.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
A.
,
2021
, “
Fresh in My Minds! Investigating the Effects of the Order of Presenting Opportunistic and Restrictive Design for Additive Manufacturing Content on Student’s Creativity
,”
J. Eng. Des.
,
32
(
4
), pp.
187
212
.
36.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
347
(
3
), pp.
1
14
.
37.
Crispo
,
L.
, and
Kim
,
I.
,
2021
, “
Part Consolidation for Additive Manufacturing: A Multi-Layered Topology Optimization Approach
,”
Int. J. Numer. Methods Eng.
,
122
(
18
), pp.
4987
5027
.
38.
Jankovics
,
D.
,
Barari
,
A.
,
Jankovics
,
D.
,
Barari
,
A.
,
Jankovics
,
D.
,
Barari
,
A.
, and
Barari
,
A.
,
2019
, “
Customization of Automotive Structural Components Using Additive Manufacturing and Topology Optimization
,”
IFAC-PapersOnLine
,
52
(
10
), pp.
212
217
.
39.
Reichwein
,
J.
,
Vogel
,
S.
,
Schork
,
S.
, and
Kirchner
,
E.
,
2020
, “
On the Applicability of Agile Development Methods to Design for Additive Manufacturing
,”
Procedia CIRP
,
91
, pp.
653
658
.
40.
Vaneker
,
T.
,
Bernard
,
A.
,
Moroni
,
G.
,
Gibson
,
I.
, and
Zhang
,
Y.
,
2020
, “
Design for Additive Manufacturing: Framework and Methodology
,”
CIRP Ann.
,
69
(
2
), pp.
578
599
.
41.
Haruna
,
A.
, and
Jiang
,
P.
,
2020
, “
A Design for Additive Manufacturing Framework: Product Function Integration and Structure Simplification
,”
IFAC-PapersOnLine
,
53
(
5
), pp.
77
82
.
42.
Renjith
,
S. C.
,
Okudan Kremer
,
G. E.
, and
Park
,
K.
,
2018
, “
A Design Framework for Additive Manufacturing Through the Synergistic Use of Axiomatic Design Theory and TRIZ
,”
Proceedings of the 2018 IISE Annual Conference and Expo
,
Orlando, FL
,
May 19–22
,, pp.
551
556
.
43.
Gross
,
J.
,
Park
,
K.
, and
Okudan Kremer
,
G. E.
,
2018
, “
Design for Additive Manufacturing Inspired by TRIZ
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol. 4,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
6
.
44.
Yuan
,
H.
,
Xing
,
K.
, and
Hsu
,
H. Y.
,
2019
, “
Generate Basic Conceptual Solutions for 3DPVS Via Utilizing TRIZ
,”
Bio-Des. Manuf.
,
2
(
2
), pp.
76
95
.
45.
Mawale
,
M. B.
,
Kuthe
,
A.
,
Mawale
,
A. M.
, and
Dahake
,
S. W.
,
2018
, “
Development of an Ear Cap in Chronic Suppurative Otitis Media Using Additive Manufacturing and TRIZ
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
232
(
7
), pp.
733
738
.
46.
Chang
,
T. Y.
,
Lu
,
H. P.
,
Luor
,
T. Y.
, and
Wu
,
C. Y.
,
2018
, “
Research and Innovative Design of a Drawing Instrument—A Case Study of Dashed Line Pen
,”
Proceedings of 4th IEEE International Conference on Applied System Innovation 2018 (ICASI 2018)
, Vol. 7,
Chiba, Japan
,
Apr. 13–17
, pp.
712
715
.
47.
Bariani
,
P. F.
,
Berti
,
G. A.
, and
Lucchetta
,
G.
,
2004
, “
A Combined DFMA and TRIZ Approach to the Simplification of Product Structure
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
218
(
8
), pp.
1023
1027
.
48.
Galati
,
M.
, and
Minetola
,
P.
,
2020
, “
On the Measure of the Aesthetic Quality of 3D Printed Plastic Parts
,”
Int. J. Interact. Des. Manuf.
,
14
(
2
), pp.
381
392
.
49.
Zulhasni
,
A. R.
,
Nooh
,
A. B.
,
Sarimah
,
M.
, and
Yeoh
,
T. S.
,
2015
, “
TRIZ Business Improvement and Innovation Framework for Malaysian Small and Medium Enterprise
,”
Appl. Mech. Mater.
,
735
, pp.
349
353
.
You do not currently have access to this content.