Abstract

The present article proposes an algorithm for the sensitivity analysis of a multidisciplinary problem, in which the derivative-based global sensitivity indices are computed with multifidelity Gaussian process models. Two levels of fidelity are used to estimate the indices, where the low-fidelity samples are obtained by stopping the multidisciplinary analysis solver before convergence. A dedicated refinement strategy for the multifidelity Gaussian process is proposed to ensure the accuracy of the sensitivity index estimation. This algorithm is tested on three multidisciplinary problems of increasing complexity (one analytical and two representative engineering design problems), and proved to be both reliable in detecting the noninfluential variables and computationally efficient, compared to classical Monte Carlo integration and to three other candidate algorithms.

References

1.
Hwang
,
J. T.
, and
Ning
,
A.
,
2018
, “
Large-Scale Multidisciplinary Optimization of an Electric Aircraft for On-Demand Mobility
,”
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
1384
.
2.
Brevault
,
L.
,
Balesdent
,
M.
, and
Hebbal
,
A.
,
2020
, “
Multi-objective Multidisciplinary Design Optimization Approach for Partially Reusable Launch Vehicle Design
,”
J. Spacecr. Rockets
,
57
(
2
), pp.
373
390
.
3.
Kamat
,
S. S.
,
Gunti
,
S.
,
Veerababu
,
B.
, and
Venugopal
,
S.
,
2023
, “
A Methodology for Multi-objective Design Optimization (MDO) of Automotive Transmission Systems
,”
National Conference on Multidisciplinary Analysis and Optimization
,
Madras, India
,
Oct. 7–9
, Springer, pp.
217
227
.
4.
Du
,
L.
,
Hefazi
,
H.
, and
Sahoo
,
P.
,
2019
, “
Multidisciplinary Design Optimization of Life Cycle Benefit of Trimarans Using Monte Carlo Method
,”
Naval Eng. J.
,
131
(
3
), pp.
79
90
.
5.
Hwang
,
J. T.
,
Jain
,
A. V.
, and
Ha
,
T. H.
,
2019
, “
Large-Scale Multidisciplinary Design Optimization—Review and Recommendations
,”
AIAA Aviation Forum
,
Dallas, TX
,
June 17–21
, p.
3106
.
6.
Martins
,
J. R. R. A.
, and
Hwang
,
J. T.
,
2013
, “
Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models
,”
AIAA J.
,
51
(
11
), pp.
2582
2599
.
7.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
8.
Da Veiga
,
S.
,
Gamboa
,
F.
,
Iooss
,
B.
, and
Prieur
,
C.
,
2021
,
Basics and Trends in Sensitivity Analysis: Theory and Practice in R
,
SIAM
,
Philadelphia, PA
.
9.
de Rocquigny
,
E.
,
Devictor
,
N.
, and
Tarantola
,
S.
,
2008
,
Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management
,
John Wiley & Sons
,
Chichester, UK
.
10.
Brevault
,
L.
,
Balesdent
,
M.
,
Bérend
,
N.
, and
Le Riche
,
R.
,
2013
, “
Comparison of Different Global Sensitivity Analysis Methods for Aerospace Vehicle Optimal Design
,”
10th World Congress on Structural and Multidisciplinary Optimization
,
Orlando, FL
,
May 19–24
.
11.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
12.
Sobol′
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
13.
Iooss
,
B.
,
Popelin
,
A.
,
Blatman
,
G.
,
Ciric
,
C.
,
Gamboa
,
F.
,
Lacaze
,
S.
, and
Lamboni
,
M.
,
2012
, “
Some New Insights in Derivative-Based Global Sensitivity Measures
,”
11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference
,
Helsinki, Finland
,
June 25–29
, pp.
1094
1104
.
14.
Kiparissides
,
A.
,
Kucherenko
,
S. S.
,
Mantalaris
,
A.
, and
Pistikopoulos
,
E. N.
,
2009
, “
Global Sensitivity Analysis Challenges in Biological Systems Modeling
,”
Ind. Eng. Chem. Res.
,
48
(
15
), pp.
7168
7180
.
15.
Salkuyeh
,
D. K.
,
2007
, “
Generalized Jacobi and Gauss–Seidel Methods for Solving Linear System of Equations
,”
Numer. Math. Engl. Ser.
,
16
(
2
), p.
164
.
16.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
17.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “
A Review on Global Sensitivity Analysis Methods
,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
G.
Dellino
and
C.
Meloni
, eds., Operations Research/Computer Science Interfaces Series.
Springer US
,
Boston, MA
, pp.
101
122
.
18.
Sobol’
,
I.
, and
Kucherenko
,
S.
,
2009
, “
Derivative Based Global Sensitivity Measures and Their Link With Global Sensitivity Indices
,”
Math. Comput. Simul.
,
79
(
10
), pp.
3009
3017
.
19.
Kucherenko
,
S.
, and
Iooss
,
B.
,
2015
, “Derivative Based Global Sensitivity Measures,” arXiv:1412.2619.
20.
Lamboni
,
M.
,
Iooss
,
B.
,
Popelin
,
A.-L.
, and
Gamboa
,
F.
,
2013
, “
Derivative-Based Global Sensitivity Measures: General Links With Sobol’ Indices and Numerical Tests
,”
Math. Comput. Simul.
,
87
, pp.
45
54
.
21.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
22.
Brevault
,
L.
,
Balesdent
,
M.
, and
Hebbal
,
A.
,
2020
, “
Overview of Gaussian Process Based Multi-fidelity Techniques With Variable Relationship Between Fidelities, Application to Aerospace Systems
,”
Aerosp. Sci. Technol.
,
107
, p.
106339
.
23.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive Co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncert. Quant.
,
4
(
5
), pp.
365
386
.
24.
Kennedy
,
M.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
25.
Le Gratiet
,
L.
, and
Cannamela
,
C.
,
2015
, “
Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-Fidelity Computer Codes
,”
Technometrics
,
57
(
3
), pp.
418
427
.
26.
Goovaerts
,
P.
,
1997
,
Geostatistics for Natural Resources Evaluation
,
Oxford University Press
,
New York
.
27.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N. D.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-fidelity Modelling
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2198
), p.
20160751
.
28.
Cutajar
,
K.
,
Pullin
,
M.
,
Damianou
,
A.
,
Lawrence
,
N.
, and
González
,
J.
,
2019
, “Deep Gaussian Processes for Multi-Fidelity Modeling,” arXiv preprint arXiv:1903.07320.
29.
Hebbal
,
A.
,
Brevault
,
L.
,
Balesdent
,
M.
,
Talbi
,
E.-G.
, and
Melab
,
N.
,
2021
, “
Multi-Fidelity Modeling With Different Input Domain Definitions Using Deep Gaussian Processes
,”
Struct. Multidiscipl. Optim.
,
63
(
5
), pp.
2267
2288
.
30.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D. R.
,
1998
, “
Global Versus Local Search in Constrained Optimization of Computer Models
,”
Lecture Notes-Monograph Series
,
34
, pp.
11
25
.
31.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.
32.
Shu
,
L.
,
Jiang
,
P.
, and
Wang
,
Y.
,
2021
, “
A Multi-fidelity Bayesian Optimization Approach Based on the Expected Further Improvement
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
1709
1719
.
33.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
sMF-BO-2CoGP: A Sequential Multi-fidelity Constrained Bayesian Optimization Framework for Design Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031007
.
34.
Garland
,
N.
,
Riche
,
R. L.
,
Richet
,
Y.
, and
Durrande
,
N.
,
2020
, “Multi-Fidelity for MDO Using Gaussian Processes,”
Aerospace System Analysis and Optimization in Uncertainty
,
Springer
,
Cham
, pp.
295
320
.
35.
Chaudhuri
,
A.
,
Marques
,
A. N.
, and
Willcox
,
K.
,
2021
, “
mfEGRA: Multifidelity Efficient Global Reliability Analysis Through Active Learning for Failure Boundary Location
,”
Struct. Multidiscipl. Optim.
,
64
(
2
), pp.
797
811
.
36.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Southern Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
37.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
38.
Molinaro
,
A. M.
,
Simon
,
R.
, and
Pfeiffer
,
R. M.
,
2005
, “
Prediction Error Estimation: A Comparison of Resampling Methods
,”
Bioinformatics
,
21
(
15
), pp.
3301
3307
.
39.
Gray
,
J. S.
,
Hwang
,
J. T.
,
Martins
,
J. R. R. A.
,
Moore
,
K. T.
, and
Naylor
,
B. A.
,
2019
, “
OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization
,”
Struct. Multidiscipl. Optim.
,
59
(
4
), pp.
1075
1104
.
40.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R. R. A.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Softw.
,
135
, p.
102662
.
41.
Sellar
,
R.
,
Batill
,
S.
, and
Renaud
,
J.
,
1996
, “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
34th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 15–18
.
42.
Jasa
,
J. P.
,
Hwang
,
J. T.
, and
Martins
,
J. R. R. A.
,
2018
, “
Open-Source Coupled Aerostructural Optimization Using Python
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1815
1827
.
43.
OpenTURNS
,
2020
,
Spearman Correlation Coefficient—OpenTURNS 1.16 Documentation
, https://openturns.github.io/openturns/latest/theory/data_analysis/spearman_coefficient.html.
44.
Wertz
,
J. R.
, and
Larson
,
W. J.
, eds.,
1999
,
Space Mission Analysis and Design
, 3rd ed., Space Technology Library, Microcosm, El Segundo, CA; Kluwer, Dordrecht, Boston.
45.
Zaman
,
K.
,
2010
, “
Modeling and Management of Epistemic Uncertainty for Multidisciplinary System Analysis and Design
,”
Ph.D. Thesis
,
Vanderbilt University
,
Nashville, TN
.
46.
Ferson
,
S.
,
Tucker
,
W.
,
Paredis
,
C.
,
Bulgak
,
Y.
, and
Kreinovich
,
V.
,
2009
,
NASA Small Business Innovation Research Phase 2 Final Report NNL07AA06C
.
47.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2012
, “
Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031008
.
You do not currently have access to this content.