Abstract

One degrees-of-freedom (1DOF) linkages are persistent in mechanical systems. However, designing linkages to follow a desired path, known as path synthesis, is challenging due to non-linearities, combinatorial nature, and strict geometric constraints. Current state-of-the-art algorithms cannot scale well to linkages with higher-order linkage graphs, which are required to satisfy more complicated paths for new mechanical systems, such as hopping and flying robots. One reason for this is that state-of-the-art algorithms spend the majority of the time exploring constraint-violating designs. This work uses an Assur group 0DOF linkage as a graph grammar rule to modify both linkage graph and spatial parameters, ensuring all designs are valid 1DOF linkages. Using this graph grammar, this paper formulates linkage path synthesis as a tree search and uses a deep reinforcement learning (DRL) agent to search the space of kinematically feasible planar 1DOF linkages. This paper introduces a method using a graph convolution policy for high-order linkage graph optimization (GCP-HOLO). An anytime algorithm, GCP-HOLO outputs linkages with 1–8 loops (4–16 bars) efficiently. When comparing the GCP-HOLO formulation to a recent state-of-the-art paper that solves a mixed integer conic program, GCP-HOLO generates sets of solutions of varying linkage complexities to eight test trajectories in a quarter of the time. Extending GCP-HOLO with a global node optimization, such as covariance matrix adaptation evolutionary strategy, the results quickly converge to finding better solutions for 4/8 tests, with the whole pipeline capable of a 13X speed increase.

References

1.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
.
2.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S. J.
, and
Hutchinson
,
S.
,
2016
, “
Bat Bot (B2), A Biologically Inspired Flying Machine
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
, pp.
3219
3226
.
4.
Plecnik
,
M. M.
,
Haldane
,
D. W.
,
Yim
,
J. K.
, and
Fearing Professor
,
R. S.
,
2017
, “
Design Exploration and Kinematic Tuning of a Power Modulating Jumping Monopod
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011009
.
5.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
6.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.
7.
Freudenstein
,
F.
,
1955
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(
3
), pp.
483
492
.
8.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2020
, “
Designing Dynamic Machines With Large-Scale Root Finding
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1135
1152
.
9.
Lipson
,
H.
,
2008
, “
Evolutionary Synthesis of Kinematic Mechanisms
,”
AI EDAM
,
22
(
3
), pp.
195
205
.
10.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
.
11.
Pan
,
Z.
,
Liu
,
M.
,
Gao
,
X.
, and
Manocha
,
D.
,
2022
, “
Joint Search of Optimal Topology and Trajectory for Planar Linkages
,”
Int. J. Rob. Res.
12.
Assur
,
L. V.
,
1914
, “
Investigation of Plane Hinged Mechanisms With Lower Pairs From the Point of View of Their Structure and Classification (in Russian): Part I, II
,”
Bull. Petrograd Polytech. Inst.
,
21
, pp.
187
283
.
13.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.
14.
Plecnik
,
M. M.
, and
Mccarthy
,
J. M.
,
2015
, “
Design of Stephenson Linkages That Guide a Point Along a Specified Trajectory
,”
Mech. Mach. Theory
,
96
, pp.
38
51
.
15.
Thomaszewski
,
B.
,
Coros
,
S.
,
Gauge
,
D.
,
Megaro
,
V.
,
Grinspun
,
E.
, and
Gross
,
M.
,
2014
, “
Computational Design of Linkage-Based Characters
,”
ACM Trans. Graph.
,
33
(
4
), pp.
1
9
.
16.
Bächer
,
M.
,
Coros
,
S.
, and
Thomaszewski
,
B.
,
2015
, “
Linkedit: Interactive Linkage Editing Using Symbolic Kinematics
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
8
.
17.
Zhao
,
P.
,
Ge
,
X.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
Planar Linkage Synthesis for Mixed Exact and Approximated Motion Realization Via Kinematic Mapping
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051004
.
18.
Nanni
,
L.
,
Ghidoni
,
S.
, and
Brahnam
,
S.
,
2017
, “
Handcrafted vs. Non-Handcrafted Features for Computer Vision Classification
,”
Pattern Recogn.
,
71
, pp.
158
172
.
19.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
20.
You
,
J.
,
Liu
,
B.
,
Ying
,
R.
,
Pande
,
V.
, and
Leskovec
,
J.
,
2018
, “
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
,”
Conference on Neural Information Processing Systems (NeurIPS)
,
Montréal, Canada
,
Dec. 3–8
.
21.
Whitman
,
J.
,
Bhirangi
,
R.
,
Travers
,
M.
, and
Choset
,
H.
,
2020
, “
Modular Robot Design Synthesis With Deep Reinforcement Learning
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
New York
,
Feb. 7–12
.
22.
Zhao
,
A.
,
Xu
,
J.
,
Konaković-Luković
,
M.
,
Hughes
,
J.
,
Spielberg
,
A.
,
Rus
,
D.
, and
Matusik
,
W.
,
2020
, “
RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design
,”
ACM Trans. Graph.
,
39
(
6
), pp.
1
16
.
23.
Raina
,
A.
,
Puentes
,
L.
,
Cagan
,
J.
, and
Mccomb
,
C.
,
2021
, “
Goal-Directed Design Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for Generative Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124501
.
24.
Jansen
,
T.
,
1990
, “Strandbeast,” https://www.strandbeest.com/
25.
Kavitha
,
T.
,
Mehlhorn
,
K.
,
Michail
,
D.
, and
Paluch
,
K. E.
,
2007
, “
An O(m^2n) Algorithm for Minimum Cycle Basis of Graphs
,”
Algorithmica
,
52
(
3
), pp.
333
349
.
26.
Kecskeméthy
,
A.
,
Krupp
,
T.
, and
Hiller
,
M.
,
1997
, “
Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions
,”
Multibody Syst. Dyn.
,
1
(
1
), pp.
23
45
.
27.
Tsai
,
W.
, and
Mccarthy
,
J. M.
,
2000
, “
Mechanism Design: Enumeration of Kinematic Structures According to Function
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
583
583
.
28.
Kipf
,
T. N.
, and
Welling
,
M.
,
2017
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings
,
Toulon, France
,
Apr. 24–26
.
29.
Maron
,
H.
,
Ben-Hamu
,
H.
,
Shamir
,
N.
, and
Lipman
,
Y.
,
2019
, “
Invariant and Equivariant Graph Networks
,”
The International Conference of Learning Representation (ICLR)
, https://openreview.net/forum?id=Syx72jC9tm, Accessed July 3, 2022.
30.
Schulman
,
J.
,
Wolski
,
F.
,
Dhariwal
,
P.
,
Radford
,
A.
, and
Openai
,
O. K.
,
2017
, “
Proximal Policy Optimization Algorithms
,”
arXiv preprint
.
31.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
, et al
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
32.
Raffin
,
A.
,
Hill
,
A.
,
Gleave
,
A.
,
Kanervisto
,
A.
,
Ernestus
,
M.
, and
Dormann
,
N.
,
2021
, “
Stable-Baselines3: Reliable Reinforcement Learning Implementations
,”
J. Mach. Learn. Res.
,
22
(
268
), pp.
1
8
.
33.
Vagle
,
W.
,
2015
, “
Team Trotbot
,” https://www.teamtrotbot.com/. https://www.teamtrotbot.com/mechanism.html, Accessed April 21, 2022.
34.
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
Design Strategy Network: A Deep Hierarchical Framework to Represent Generative Design Strategies in Complex Action Spaces
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021404
.
You do not currently have access to this content.