Abstract

Computational design is growing in necessity for advancing biomedical technologies, particularly for complex systems with numerous trade-offs. For instance, in tissue scaffolds constructed from repeating unit cells, the structure’s porosity and topology affect biological tissue and vasculature growth. Here, we adapt curvature-based tissue growth and agent-based vasculature models for predicting scaffold mechanobiological growth. A non-dominated sorting genetic algorithm (NSGA-II) is used for dual-objective optimization of scaffold tissue and blood vessel growth with heterogeneous unit cell placement. Design inputs consist of unit cells of two different topologies, void unit cells, and beam diameters from 64 to 313 µm. Findings demonstrate a design heuristic for optimizing scaffolds by placing two selected unit cells, one that favors high tissue growth density and one that favors blood vessel growth, throughout the scaffold. The pareto front of solutions demonstrates that scaffolds with large porous areas termed channel voids or small voids improve vasculature growth while lattices with no larger void areas result in higher tissue growth. Results demonstrate the merit in computational investigations for characterizing tissue scaffold design trade-offs and provide a foundation for future design multi-objective optimization for complex biomedical systems.

References

1.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
, et al.,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
737
760
.
2.
Cohen
,
D. O.
,
Aboutaleb
,
S. M.
,
Johnson
,
A. W.
, and
Norato
,
J. A.
,
2021
, “
Bone Adaptation-Driven Design of Periodic Scaffolds
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121701
.
3.
Egan
,
P.
,
Cagan
,
J.
,
Schunn
,
C.
,
Chiu
,
F.
,
Moore
,
J.
, and
LeDuc
,
P.
,
2016
, “
The D3 Methodology: Bridging Science and Design for Bio-based Product Development
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081101
.
4.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Lamberti
,
L.
, and
Monno
,
G.
,
2016
, “
A Mechanobiology-Based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds
,”
Int. J. Biol. Sci.
,
12
(
1
), p.
1
17
.
5.
Egan
,
P. F.
,
Bauer
,
I.
,
Shea
,
K.
, and
Ferguson
,
S. J.
,
2019
, “
Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031703
.
6.
Hollister
,
S. J.
,
Flanagan
,
C. L.
,
Zopf
,
D. A.
,
Morrison
,
R. J.
,
Nasser
,
H.
,
Patel
,
J. J.
,
Ebramzadeh
,
E.
,
Sangiorgio
,
S. N.
,
Wheeler
,
M. B.
, and
Green
,
G. E.
,
2015
, “
Design Control for Clinical Translation of 3D Printed Modular Scaffolds
,”
Ann. Biomed. Eng.
,
43
(
3
), pp.
774
786
.
7.
Egan
,
P. F.
,
2019
, “
Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook
,”
Materials
,
12
(
15
), p.
2355
.
8.
Mohammed
,
M. I.
, and
Gibson
,
I.
,
2018
, “
Design of Three-Dimensional, Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071701
.
9.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
10.
Bidan
,
C. M.
,
Wang
,
F. M.
, and
Dunlop
,
J. W.
,
2013
, “
A Three-Dimensional Model for Tissue Deposition on Complex Surfaces
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
10
), pp.
1056
1070
.
11.
Paris
,
M.
,
Götz
,
A.
,
Hettrich
,
I.
,
Bidan
,
C. M.
,
Dunlop
,
J. W.
,
Razi
,
H.
,
Zizak
,
I.
,
Hutmacher
,
D. W.
,
Fratzl
,
P.
, and
Duda
,
G. N.
,
2017
, “
Scaffold Curvature-Mediated Novel Biomineralization Process Originates a Continuous Soft Tissue-to-Bone Interface
,”
Acta Biomater.
,
60
, pp.
64
80
.
12.
Mehdizadeh
,
H.
,
Sumo
,
S.
,
Bayrak
,
E. S.
,
Brey
,
E. M.
, and
Cinar
,
A.
,
2013
, “
Three-Dimensional Modeling of Angiogenesis in Porous Biomaterial Scaffolds
,”
Biomaterials
,
34
(
12
), pp.
2875
2887
.
13.
Walpole
,
J.
,
Chappell
,
J.
,
Cluceru
,
J.
,
Mac Gabhann
,
F.
,
Bautch
,
V.
, and
Peirce
,
S.
,
2015
, “
Agent-Based Model of Angiogenesis Simulates Capillary Sprout Initiation in Multicellular Networks
,”
Integr. Biol.
,
7
(
9
), pp.
987
997
.
14.
Xu
,
M.
,
Yang
,
J.
,
Lieberman
,
I. H.
, and
Haddas
,
R.
,
2019
, “
Finite Element Method-Based Study of Pedicle Screw–Bone Connection in Pullout Test and Physiological Spinal Loads
,”
Med. Eng. Phys.
,
67
, pp.
11
21
.
15.
Xu
,
M.
,
Yang
,
J.
,
Lieberman
,
I.
, and
Haddas
,
R.
,
2019
, “
Stress Distribution in Vertebral Bone and Pedicle Screw and Screw–Bone Load Transfers Among Various Fixation Methods for Lumbar Spine Surgical Alignment: A Finite Element Study
,”
Med. Eng. Phys.
,
63
, pp.
26
32
.
16.
Zhang
,
W.
,
Sun
,
C.
,
Zhu
,
J.
,
Zhang
,
W.
,
Leng
,
H.
, and
Song
,
C.
,
2020
, “
3D Printed Porous Titanium Cages Filled With Simvastatin Hydrogel Promotes Bone Ingrowth and Spinal Fusion in Rhesus Macaques
,”
Biomater. Sci.
,
8
(
15
), pp.
4147
4156
.
17.
Han
,
X.
,
Gao
,
Y.
,
Ding
,
Y.
,
Wang
,
W.
,
Liu
,
L.
,
Zhao
,
A.
, and
Yang
,
P.
,
2021
, “
In Vitro Performance of 3D Printed PCL−β-TCP Degradable Spinal Fusion Cage
,”
J. Biomater. Appl.
,
35
(
10
), pp.
1304
1314
.
18.
Li
,
P.
,
Jiang
,
W.
,
Yan
,
J.
,
Hu
,
K.
,
Han
,
Z.
,
Wang
,
B.
,
Zhao
,
Y.
,
Cui
,
G.
,
Wang
,
Z.
, and
Mao
,
K.
,
2019
, “
A Novel 3D Printed Cage With Microporous Structure and In Vivo Fusion Function
,”
J. Biomed. Mater. Res. A.
,
107A
(
7
), pp.
1386
1392
.
19.
Haddas
,
R.
,
Xu
,
M.
,
Lieberman
,
I.
, and
Yang
,
J.
,
2019
, “
Finite Element Based-Analysis for Pre and Post Lumbar Fusion of Adult Degenerative Scoliosis Patients
,”
Spine Deform.
,
7
(
4
), pp.
543
552
.
20.
Seaman
,
S.
,
Kerezoudis
,
P.
,
Bydon
,
M.
,
Torner
,
J. C.
, and
Hitchon
,
P. W.
,
2017
, “
Titanium vs. Polyetheretherketone (PEEK) Interbody Fusion: Meta-Analysis and Review of the Literature
,”
J. Clin. Neurosci.
,
44
, pp.
23
29
.
21.
Tang
,
J.
,
Guo
,
J.
,
Li
,
Z.
,
Yang
,
C.
,
Xie
,
D.
,
Chen
,
J.
,
Li
,
S.
, et al.,
2015
, “
A Fast Degradable Citrate-Based Bone Scaffold Promotes Spinal Fusion
,”
J. Mater. Chem. B
,
3
(
27
), pp.
5569
5576
.
22.
Manzur
,
M.
,
Virk
,
S. S.
,
Jivanelli
,
B.
,
Vaishnav
,
A.
,
McAnany
,
S.
,
Albert
,
T. J.
,
Iyer
,
S.
,
Gang
,
C. H.
, and
Qureshi
,
S.
,
2019
, “
The Rate of Fusion for Stand-Alone Anterior Lumbar Interbody Fusion: A Systematic Review
,”
Spine J.
,
19
(
7
),
1294
1301
.
23.
Weiss
,
H.-R.
, and
Goodall
,
D.
,
2008
, “
Rate of Complications in Scoliosis Surgery—A Systematic Review of the Pub Med Literature
,”
Scoliosis
,
3
(
1
), p.
9
.
24.
Koller
,
H.
,
Pfanz
,
C.
,
Meier
,
O.
,
Hitzl
,
W.
,
Mayer
,
M.
,
Bullmann
,
V.
, and
Schulte
,
T. L.
,
2016
, “
Factors Influencing Radiographic and Clinical Outcomes in Adult Scoliosis Surgery: A Study of 448 European Patients
,”
Eur. Spine J.
,
25
(
2
), pp.
532
548
.
25.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
26.
Tuchman
,
A.
,
Brodke
,
D. S.
,
Youssef
,
J. A.
,
Meisel
,
H.-J.
,
Dettori
,
J. R.
,
Park
,
J.-B.
,
Yoon
,
S. T.
, and
Wang
,
J. C.
,
2017
, “
Autograft Versus Allograft for Cervical Spinal Fusion: A Systematic Review
,”
Global Spine J.
,
7
(
1
), pp.
59
70
.
27.
Roberge
,
J.
, and
Norato
,
J.
,
2018
, “
Computational Design of Curvilinear Bone Scaffolds Fabricated Via Direct Ink Writing
,”
Comput. Aided Des.
,
95
, pp.
1
13
.
28.
Norato
,
J.
, and
Wagoner Johnson
,
A.
,
2011
, “
A Computational and Cellular Solids Approach to the Stiffness-Based Design of Bone Scaffolds
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091003
.
29.
Hwangbo
,
H.
,
Lee
,
H.
,
Roh
,
E. J.
,
Kim
,
W.
,
Joshi
,
H. P.
,
Kwon
,
S. Y.
,
Choi
,
U. Y.
,
Han
,
I.-B.
, and
Kim
,
G. H.
,
2021
, “
Bone Tissue Engineering Via Application of a Collagen/Hydroxyapatite 4D-Printed Biomimetic Scaffold for Spinal Fusion
,”
Appl. Phys. Rev.
,
8
(
2
), p.
021403
.
30.
Liu
,
C.-G.
,
Zeng
,
Y.-T.
,
Kankala
,
R.
,
Zhang
,
S.-S.
,
Chen
,
A.-Z.
, and
Wang
,
S.-B.
,
2018
, “
Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues
,”
Materials
,
11
(
10
), p.
1832
.
31.
Egan
,
P. F.
,
Shea
,
K. A.
, and
Ferguson
,
S. J.
,
2018
, “
Simulated Tissue Growth for 3D Printed Scaffolds
,”
Biomech. Model. Mechanobiol.
,
17
, pp.
1481
1495
.
32.
Entezari
,
A.
,
Liu
,
N.-C.
,
Zhang
,
Z.
,
Fang
,
J.
,
Wu
,
C.
,
Wan
,
B.
,
Swain
,
M.
, and
Li
,
Q.
,
2023
, “
Nondeterministic Multiobjective Optimization of 3D Printed Ceramic Tissue Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
138
, p.
105580
.
33.
Byrne
,
D. P.
,
Lacroix
,
D.
,
Planell
,
J. A.
,
Kelly
,
D. J.
, and
Prendergast
,
P. J.
,
2007
, “
Simulation of Tissue Differentiation in a Scaffold as a Function of Porosity, Young’s Modulus and Dissolution Rate: Application of Mechanobiological Models in Tissue Engineering
,”
Biomaterials
,
28
(
36
), pp.
5544
5554
.
34.
Guyot
,
Y.
,
Papantoniou
,
I.
,
Chai
,
Y. C.
,
Van Bael
,
S.
,
Schrooten
,
J.
, and
Geris
,
L.
,
2014
, “
A Computational Model for Cell/ECM Growth on 3D Surfaces Using the Level Set Method: A Bone Tissue Engineering Case Study
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1361
1371
.
35.
Guyot
,
Y.
,
Luyten
,
F.
,
Schrooten
,
J.
,
Papantoniou
,
I.
, and
Geris
,
L.
,
2015
, “
A Three-Dimensional Computational Fluid Dynamics Model of Shear Stress Distribution During Neotissue Growth in a Perfusion Bioreactor
,”
Biotechnol. Bioeng.
,
112
(
12
), pp.
2591
2600
.
36.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Mori
,
G.
, and
Monno
,
G.
,
2016
, “
Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach
,”
PLoS One
,
11
(
1
), p.
e0146935
.
37.
Bidan
,
C. M.
,
Kommareddy
,
K. P.
,
Rumpler
,
M.
,
Kollmannsberger
,
P.
,
Bréchet
,
Y. J.
,
Fratzl
,
P.
, and
Dunlop
,
J. W.
,
2012
, “
How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth
,”
PLoS One
,
7
(
5
), p.
e36336
.
38.
Bidan
,
C. M.
,
Kommareddy
,
K. P.
,
Rumpler
,
M.
,
Kollmannsberger
,
P.
,
Fratzl
,
P.
, and
Dunlop
,
J. W.
,
2013
, “
Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds
,”
Adv. Healthcare Mater.
,
2
(
1
), pp.
186
194
.
39.
Carlier
,
A.
,
Geris
,
L.
,
Bentley
,
K.
,
Carmeliet
,
G.
,
Carmeliet
,
P.
, and
Van Oosterwyck
,
H.
,
2012
, “
MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis With Lateral Inhibition of Endothelial Cells
,”
PLoS Comput. Biol.
,
8
(
10
), p.
e1002724
.
40.
Sung
,
H.-J.
,
Meredith
,
C.
,
Johnson
,
C.
, and
Galis
,
Z. S.
,
2004
, “
The Effect of Scaffold Degradation Rate on Three-Dimensional Cell Growth and Angiogenesis
,”
Biomaterials
,
25
(
26
), pp.
5735
5742
.
41.
Artel
,
A.
,
Mehdizadeh
,
H.
,
Chiu
,
Y.-C.
,
Brey
,
E. M.
, and
Cinar
,
A.
,
2011
, “
An Agent-Based Model for the Investigation of Neovascularization Within Porous Scaffolds
,”
Tissue Eng. Part A
,
17
(
17–18
), pp.
2133
2141
.
42.
Mehdizadeh
,
H.
,
Somo
,
S. I.
,
Bayrak
,
E. S.
,
Brey
,
E. M.
, and
Cinar
,
A.
,
2015
, “
Design of Polymer Scaffolds for Tissue Engineering Applications
,”
Ind. Eng. Chem. Res.
,
54
(
8
), pp.
2317
2328
.
43.
Mehdizadeh
,
H.
,
Bayrak
,
E. S.
,
Lu
,
C.
,
Somo
,
S. I.
,
Akar
,
B.
,
Brey
,
E. M.
, and
Cinar
,
A.
,
2015
, “
Agent-Based Modeling of Porous Scaffold Degradation and Vascularization: Optimal Scaffold Design Based on Architecture and Degradation Dynamics
,”
Acta Biomater.
,
27
,
167
178
.
44.
De Wild
,
M.
,
Ghayor
,
C.
,
Zimmermann
,
S.
,
Rüegg
,
J.
,
Nicholls
,
F.
,
Schuler
,
F.
,
Chen
,
T.-H.
, and
Weber
,
F. E.
,
2019
, “
Osteoconductive Lattice Microarchitecture for Optimized Bone Regeneration
,”
3D Print. Addit. Manuf.
,
6
(
1
),
40
49
.
45.
Ghayor
,
C.
, and
Weber
,
F. E.
,
2018
, “
Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited
,”
Front. Physiol.
,
9
, p.
960
.
46.
Yeh
,
R. Y.
,
Nischal
,
K. K.
,
LeDuc
,
P.
, and
Cagan
,
J.
,
2020
, “
Written in Blood: Applying Shape Grammars to Retinal Vasculatures
,”
Transl. Vis. Sci. Technol.
,
9
(
9
), pp.
36
36
.
47.
Whiting
,
M. E.
,
Leduc
,
P. R.
, and
Cagan
,
J.
,
2017
, “
Efficient Automatic Induction of Rules in Biological Systems
,”
FASEB J.
,
31
(
S1
), pp.
927.5
927.5
.
48.
Egan
,
P.
,
Ferguson
,
S.
, and
Shea
,
K.
,
2017
, “
Design of Hierarchical 3D Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061401
.
49.
Ha
,
Y.
,
Ma
,
X.
,
Li
,
S.
,
Li
,
T.
,
Li
,
Z.
,
Qian
,
Y.
,
Shafiq
,
M.
,
Wang
,
J.
,
Zhou
,
X.
, and
He
,
C.
,
2022
, “
Bone Microenvironment-Mimetic Scaffolds With Hierarchical Microstructure for Enhanced Vascularization and Bone Regeneration
,”
Adv. Funct. Mater.
,
32
(
20
), p.
2200011
.
50.
Herbol
,
H. C.
,
Hu
,
W. C.
,
Frazier
,
P.
,
Clancy
,
P.
, and
Poloczek
,
M.
,
2018
, “
Efficient Search of Compositional Space for Hybrid Organic-Inorganic Perovskites Via Bayesian Optimization
,”
Npj Comput. Mater.
,
4
(
1
).
51.
Wang
,
S. P.
,
Zhao
,
D. M.
,
Yuan
,
J. Z.
,
Li
,
H. J.
, and
Gao
,
Y.
,
2019
, “
Application of NSGA-II Algorithm for Fault Diagnosis in Power System
,”
Electr. Power Syst. Res.
,
175
, p.
105893
.
52.
Yildiz
,
A. R.
,
2012
, “
A Comparative Study of Population-Based Optimization Algorithms for Turning Operations
,”
Inf. Sci.
,
210
, pp.
81
88
.
53.
Gholizadeh
,
S.
,
Danesh
,
M.
, and
Gheyratmand
,
C.
,
2020
, “
A New Newton Metaheuristic Algorithm for Discrete Performance-Based Design Optimization of Steel Moment Frames
,”
Comput. Struct.
,
234
, p.
106250
.
54.
Conn
,
A. R.
,
Scheinberg
,
K.
, and
Vicente
,
L. N.
,
2009
,
Introduction to Derivative-Free Optimization Introduction
,
SIAM
,
Philadelphia, PA
.
55.
Liu
,
Q.
,
Li
,
X. F.
,
Liu
,
H. T.
, and
Guo
,
Z. X.
,
2020
, “
Multi-objective Metaheuristics for Discrete Optimization Problems: A Review of the State-of-the-Art
,”
Appl. Soft Comput.
,
93
, p.
106382
.
56.
Bhushan
,
B.
, and
Pillai
,
S. S.
,
2013
, “
Particle Swarm Optimization and Firefly Algorithm: Performance Analysis
,”
IEEE Int. Adv. Comput.
, pp.
746
751
.
57.
Mann
,
G. W.
, and
Eckels
,
S.
,
2019
, “
Multi-objective Heat Transfer Optimization of 2D Helical Micro-fins Using NSGA-II
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1250
1261
.
58.
Li
,
X.
,
Qu
,
H.
,
Li
,
G.
,
Guo
,
S.
, and
Dong
,
G.
,
2023
, “
Optimal Design of a Kinematically Redundant Planar Parallel Mechanism Based on Error Sensitivity and Workspace
,”
ASME J. Mech. Des.
,
145
(
2
), p.
023305
.
59.
Rodriguez
,
M. B. R.
,
Rodriguez
,
J. L. M.
, and
Fontes
,
C. H. D.
,
2019
, “
Thermo Ecological Optimization of Shell and Tube Heat Exchangers Using NSGA II
,”
Appl. Therm. Eng.
,
156
, pp.
91
98
.
60.
Mohammadi
,
A. S.
,
Trovao
,
J. P. F.
, and
Antunes
,
C. H.
,
2020
, “
Component-Level Optimization of Hybrid Excitation Synchronous Machines for a Specified Hybridization Ratio Using NSGA-II
,”
IEEE Trans. Energy Convers.
,
35
(
3
), pp.
1596
1605
.
61.
Kamaloo
,
A.
,
Jabbari
,
M.
,
Tooski
,
M. Y.
, and
Javadi
,
M.
,
2019
, “
Optimization of Thickness and Delamination Growth in Composite Laminates Under Multi-axial Fatigue Loading Using NSGA-II
,”
Compos. Part B Eng.
,
174
, p.
106936
.
62.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
63.
Arefin
,
A. M.
,
Lahowetz
,
M.
, and
Egan
,
P. F.
,
2021
, “
Simulated Tissue Growth in Tetragonal Lattices With Mechanical Stiffness Tuned for Bone Tissue Engineering
,”
Comput. Biol. Med.
,
138
, p.
104913
.
64.
Bullard
,
J.
,
Garboczi
,
E.
,
Carter
,
W.
, and
Fuller
,
E.
,
1995
, “
Numerical Methods for Computing Interfacial Mean Curvature
,”
Comput. Mater. Sci.
,
4
(
2
), pp.
103
116
.
65.
Wang
,
M. O.
,
Vorwald
,
C. E.
,
Dreher
,
M. L.
,
Mott
,
E. J.
,
Cheng
,
M. H.
,
Cinar
,
A.
,
Mehdizadeh
,
H.
, et al,
2015
, “
Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering
,”
Adv. Mater.
,
27
(
1
), pp.
138
144
.
66.
Jodati
,
H.
,
Yılmaz
,
B.
, and
Evis
,
Z.
,
2020
, “
A Review of Bioceramic Porous Scaffolds for Hard Tissue Applications: Effects of Structural Features
,”
Ceram. Int.
,
46
(
10
),
15725
15739
.
67.
Dean
,
D.
,
Wallace
,
J.
,
Siblani
,
A.
,
Wang
,
M. O.
,
Kim
,
K.
,
Mikos
,
A. G.
, and
Fisher
,
J. P.
,
2012
, “
Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds: This Paper Highlights the Main Issues Regarding the Application of Continuous Digital Light Processing (cDLP) for the Production of Highly Accurate PPF Scaffolds With Layers as Thin as 60 μm for Bone Tissue Engineering
,”
Virtual Phys. Prototyp.
,
7
(
1
), pp.
13
24
.
68.
Melchels
,
F. P.
,
Bertoldi
,
K.
,
Gabbrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
(
27
), pp.
6909
6916
.
69.
Maggi
,
A.
,
Allen
,
J.
,
Desai
,
T.
, and
Greer
,
J. R.
,
2017
, “
Osteogenic Cell Functionality on 3-Dimensional Nano-scaffolds With Varying Stiffness
,”
Extreme Mech. Lett.
,
13
, pp.
1
9
.
70.
Checa
,
S.
, and
Prendergast
,
P. J.
,
2010
, “
Effect of Cell Seeding and Mechanical Loading on Vascularization and Tissue Formation Inside a Scaffold: A Mechano-biological Model Using a Lattice Approach to Simulate Cell Activity
,”
J. Biomech.
,
43
(
5
), pp.
961
968
.
71.
Egan
,
P.
,
Wang
,
X.
,
Greutert
,
H.
,
Shea
,
K.
,
Wuertz-Kozak
,
K.
, and
Ferguson
,
S.
,
2019
, “
Mechanical and Biological Characterization of 3D Printed Lattices
,”
3D Print. Addit. Manuf.
,
6
(
2
),
73
81
.
72.
Arefin
,
A.
, and
Egan
,
P. F.
,
2021
, “
Computational Investigation of Tissue and Blood Vessel Growth Trade-Offs in Hierarchical Lattices
,”
ASME IDETC Design Automation Conference
,
Virtual, Online
,
Aug. 17–19
.
73.
Arefin
,
A.
, and
Egan
,
P. F.
,
2023
, “
Pareto Optimization of Tissue and Blood Vessel Growth in 3D Printed Bone Scaffolds
,”
ASME IDETC Design Automation Conference
,
Boston, MA
,
Aug. 20–23
.
You do not currently have access to this content.