Abstract
This paper addresses the optimum design, configuration, and workspace analysis of a cable-driven parallel robot (CDPR) with an embedded tilt-roll wrist. The manipulator consists in a tilt-roll wrist mounted on the moving platform of a suspended CDPR. The embedded wrist provides large amplitudes of tilt and roll rotations and a large translational workspace obtained by the CDPR. This manipulator is suitable for tasks requiring large rotation and translation workspaces such as tomography scanning, camera-orienting devices, and visual surveillance. The moving-platform is an eight-degree-of-freedom articulated mechanism with large translational and rotational workspaces, and it is suspended from a fixed frame by six cables. The manipulator employs two bi-actuated cables, i.e., cable-loops to transmit the power from motors fixed on the ground to the tilt-roll wrist. Therefore, the manipulator achieves better dynamic performances due to a lower inertia of its moving-platform.