Abstract

Deployable ring structures have been useful concepts for engineering design applications due to their smooth transformation from an initially compact configuration to a substantially larger deployed state. As a result, over the past few decades, various computational and kinematic models have been introduced to analyze the behavior of such deployable structures. Here, we propose a type of deployable ring structure designed based on a transformable concept known as the Swivel Diaphragm. In particular, the geometry of the deployable ring structure is introduced, including different structural configurations with fixed pivots and angulated beams. Then, taking a group-theoretic approach, we establish appropriate constraint equations and perform a symmetry-adapted kinematic analysis. In the next step, the mobility and self-stress states of three example structures are studied, including a simple ring structure with C3 symmetry, a C6-symmetric ring with a hexagonal Swivel Diaphragm structure, and a general Cn-symmetric ring structure with inner hoops. The usefulness and effectiveness of the utilized group-theoretic approach are examined and validated through the study of these examples. We show that the kinematic behavior of the numerical models developed in this study agrees well with the finite element results obtained using abaqus. Importantly, the illustrated motion trajectories of the reconfigurable structures demonstrate that they retain a single degree-of-freedom as well as a cyclic symmetry. Moreover, it is shown that the angulated members necessarily rotate around the fixed pivots, which could be practically desirable in designing transformable structures for various applications in engineering and architecture.

References

1.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
,
Southampton, UK
.
2.
Cherniavsky
,
A.
,
Gulyayev
,
V.
,
Gaidaichuk
,
V.
, and
Fedoseev
,
A.
,
2005
, “
Large Deployable Space Antennas Based on Usage of Polygonal Pantograph
,”
J. Aerosp. Eng.
,
18
(
3
), pp.
139
145
.
3.
Chen
,
Y.
,
Feng
,
J.
, and
Fan
,
L.
,
2013
, “
Mobility and Kinematic Simulations of Cyclically Symmetric Deployable Truss Structures
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
227
(
10
), pp.
2218
2227
.
4.
Viquerat
,
A.
,
Hutt
,
T.
, and
Guest
,
S.
,
2013
, “
A Plane Symmetric 6R Foldable Ring
,”
Mech. Mach. Theory
,
63
, pp.
73
88
.
5.
Gezgin
,
A. G.
, and
Korkmaz
,
K.
,
2017
, “
A New Approach to the Generation of Deployable Plate Structures Based on One-Uniform Tessellations
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041015
.
6.
Ye
,
S.
,
Zhao
,
P.
,
Zhao
,
Y.
,
Kavousi
,
F.
,
Feng
,
H.
, and
Hao
,
G.
, “
A Novel Radially Closable Tubular Origami Structure (RC-ORI) for Valves
,”
Proc. Actuat., MDPI
,
11
(
9
), p.
243
.
7.
Lu
,
C.
,
Chen
,
Y.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2024
, “
Algorithmic Spatial Form-Finding of Four-Fold Origami Structures Based on Mountain-Valley Assignments
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031001
.
8.
Luo
,
Y.
,
Yu
,
Y.
, and
Liu
,
J.
,
2008
, “
A Deployable Structure Based on Bricard Linkages and Rotating Rings of Tetrahedra
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
620
630
.
9.
Buhl
,
T.
,
Jensen
,
F. V.
, and
Pellegrino
,
S.
,
2004
, “
Shape Optimization of Cover Plates for Deployable Roof Structures
,”
Comput. Struct.
,
82
(
15–16
), pp.
1227
1236
.
10.
Mirfakhraei
,
S. F.
,
Andalib
,
G.
, and
Chan
,
R.
,
2019
, “
Active Scissor-Jack for Seismic Risk Mitigation of Building Structures
,”
SN Appl. Sci.
,
1
, pp.
1
8
.
11.
Van Mele
,
T.
,
De Temmerman
,
N.
,
De Laet
,
L.
, and
Mollaert
,
M.
,
2010
, “
Scissor-Hinged Deployable Membrane Structures
,”
Int. J. Struct. Eng.
,
1
(
3–4
), pp.
374
396
.
12.
Rodriguez
,
C.
, and
Chilton
,
J.
,
2003
, “
Swivel Diaphragm: A New Alternative for Deployable Ring Structures
,”
J. Int. Assoc. Shell. Spat. Struct.
,
44
(
3
), pp.
181
188
.
13.
Arnouts
,
L.
,
Massart
,
T. J.
,
De Temmerman
,
N.
, and
Berke
,
P.
,
2018
, “
Computational Modelling of the Transformation of Bistable Scissor Structures With Geometrical Imperfections
,”
Eng. Struct.
,
177
, pp.
409
420
.
14.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
15.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
.
16.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
17.
Zhang
,
J.
,
Guest
,
S.
, and
Ohsaki
,
M.
,
2009
, “
Symmetric Prismatic Tensegrity Structures. Part II: Symmetry-Adapted Formulations
,”
Int. J. Solids Struct.
,
46
(
1
), pp.
15
30
.
18.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
19.
Huang
,
H.
,
Deng
,
Z.
, and
Li
,
B.
,
2012
, “
Mobile Assemblies of Large Deployable Mechanisms
,”
J. Space. Eng.
,
5
(
1
), pp.
1
14
.
20.
Zingoni
,
A.
,
2005
, “
A Group-Theoretic Formulation for Symmetric Finite Elements
,”
Finite Elem. Anal. Des.
,
41
(
6
), pp.
615
635
.
21.
Kaveh
,
A.
,
Nikbakht
,
M.
, and
Rahami
,
H.
,
2010
, “
Improved Group Theoretic Method Using Graph Products for the Analysis of Symmetric-Regular Structures
,”
Acta. Mech.
,
210
(
3–4
), pp.
265
289
.
22.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
.
23.
Zingoni
,
A.
,
2009
, “
Group-Theoretic Exploitations of Symmetry in Computational Solid and Structural Mechanics
,”
Int. J. Numer. Methods Eng.
,
79
(
3
), pp.
253
289
.
24.
Mehreganian
,
N.
,
Fallah
,
A. S.
, and
Sareh
,
P.
,
2021
, “
Structural Mechanics of Negative Stiffness Honeycomb Metamaterials
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051006
.
25.
Sun
,
Y.
,
Ye
,
W.
,
Chen
,
Y.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
, “
Geometric Design Classification of Kirigami-Inspired Metastructures and Metamaterials
,”
Structures
,
33
, pp.
3633
3643
.
26.
Chen
,
Y.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Particle Swarm Optimization-Based Metaheuristic Design Generation of Non-Trivial Flat-Foldable Origami Tessellations With Degree-4 Vertices
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011703
.
27.
Sareh
,
P.
, and
Guest
,
S. D.
,
2014
, “Designing Symmetric Derivatives of the Miura-Ori,”
Advances in Architectural Geometry 2014
,
Springer
,
New York
, pp.
233
241
.
28.
Chen
,
Y.
,
Ye
,
W.
,
Xu
,
R.
,
Sun
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
A Programmable Auxetic Metamaterial With Tunable Crystal Symmetry
,”
Int. J. Mech. Sci.
,
249
, p.
108249
.
29.
Chen
,
Y.
,
Lu
,
C.
,
Yan
,
J.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Intelligent Computational Design of Scalene-Faceted Flat-Foldable Tessellations
,”
J. Comput. Des. Eng.
,
9
(
5
), pp.
1765
1774
.
30.
Chen
,
Y.
,
Xu
,
R.
,
Lu
,
C.
,
Liu
,
K.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Multi-Stability of the Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
, p.
108196
.
31.
Wang
,
Y.
,
Deng
,
Z.
,
Liu
,
R.
,
Yang
,
H.
, and
Guo
,
H.
,
2014
, “
Topology Structure Synthesis and Analysis of Spatial Pyramid Deployable Truss Structures for Satellite SAR Antenna
,”
Chin. J. Mech. Eng.
,
27
(
4
), pp.
683
692
.
32.
Zingoni
,
A.
,
2018
, “
Insights on the Vibration Characteristics of Double-Layer Cable Nets of D4h Symmetry
,”
Int. J. Solids Struct.
,
135
, pp.
261
273
.
33.
Chen
,
Y.
,
Shi
,
J.
,
He
,
R.
,
Lu
,
C.
,
Shi
,
P.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
A Unified Inverse Design and Optimization Workflow for the Miura-ORing Metastructure
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091702
.
34.
Chen
,
Y.
,
Lu
,
C.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Data-Driven Design and Morphological Analysis of Conical Six-Fold Origami Structures
,”
Thin-Walled Struct.
,
185
, p.
110626
.
35.
Guest
,
S.
, and
Fowler
,
P.
,
2005
, “
A Symmetry-Extended Mobility Rule
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1002
1014
.
36.
Fan
,
L.
,
Sun
,
Y.
,
Fan
,
W.
,
Chen
,
Y.
, and
Feng
,
J.
,
2020
, “
Determination of Active Members and Zero-Stress States for Symmetric Prestressed Cable–Strut Structures
,”
Acta. Mech.
,
231
, pp.
3607
3620
.
37.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
.
38.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
39.
Chen
,
Y.
,
Feng
,
J.
, and
Zhang
,
Y.
,
2014
, “
A Necessary Condition for Stability of Kinematically Indeterminate Pin-Jointed Structures With Symmetry
,”
Mech. Res. Commun.
,
60
, pp.
64
73
.
40.
Chen
,
Y.
,
Guest
,
S. D.
,
Fowler
,
P. W.
, and
Feng
,
J.
,
2012
, “
Two-Orbit Switch-Pitch Structures
,”
J. Int. Assoc. Shell Spat. Struct.
,
53
(
3
), pp.
157
162
.
41.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
42.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
43.
Chen
,
Y.
,
Yan
,
J.
,
Sareh
,
P.
, and
Feng
,
J.
,
2020
, “
Feasible Prestress Modes for Cable-Strut Structures With Multiple Self-Stress States Using Particle Swarm Optimization
,”
J. Comput. Civ. Eng.
,
34
(
3
), p.
04020003
.
44.
Sareh
,
P.
, and
Chen
,
Y.
,
2020
, “
Intrinsic Non-Flat-Foldability of Two-Tile DDC Surfaces Composed of Glide-Reflected Irregular Quadrilaterals
,”
Int. J. Mech. Sci.
,
185
, p.
105881
.
45.
Guest
,
S.
,
Schulze
,
B.
, and
Whiteley
,
W.
,
2010
, “
When is a Symmetric Body-Bar Structure Isostatic?
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2745
2754
.
46.
Chen
,
Y.
, and
Feng
,
J.
,
2018
, “
Kinematic Indeterminacy and Folding Behavior of a Class of Overconstrained Frameworks With Symmetry
,”
Acta. Mech.
,
229
, pp.
1157
1169
.
47.
Zingoni
,
A.
,
2019
, “
On the Best Choice of Symmetry Group for Group-Theoretic Computational Schemes in Solid and Structural Mechanics
,”
Comput. Struct.
,
223
, p.
106101
.
48.
Kaveh
,
A.
, and
Nikbakht
,
M.
,
2011
, “
Analysis of Space Truss Towers Using Combined Symmetry Groups and Product Graphs
,”
Acta. Mech.
,
218
(
1–2
), pp.
133
160
.
49.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
.
50.
Wu
,
L.
,
Mueller
,
A.
, and
Dai
,
J. S.
,
2020
, “
A Matrix Method to Determine Infinitesimally Mobile Linkages With Only First-Order Infinitesimal Mobility
,”
Mech. Mach. Theory
,
148
, p.
103776
.
51.
Ross
,
E.
,
Schulze
,
B.
, and
Whiteley
,
W.
,
2011
, “
Finite Motions From Periodic Frameworks With Added Symmetry
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1711
1729
.
52.
Altmann
,
S. L.
, and
Herzig
,
P.
,
1994
,
Point-Group Theory Tables
,
Clarendon Press
,
Oxford, UK
.
53.
Zingoni
,
A.
,
2012
, “
Symmetry Recognition in Group-Theoretic Computational Schemes for Complex Structural Systems
,”
Comput. Struct.
,
94
, pp.
34
44
.
54.
Zhang
,
P.
,
Fan
,
W.
,
Chen
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2022
, “
Structural Symmetry Recognition in Planar Structures Using Convolutional Neural Networks
,”
Eng. Struct.
,
260
, p.
114227
.
55.
Chen
,
Y.
,
Sareh
,
P.
,
Feng
,
J.
, and
Sun
,
Q.
,
2017
, “
A Computational Method for Automated Detection of Engineering Structures With Cyclic Symmetries
,”
Comput. Struct.
,
191
, pp.
153
164
.
You do not currently have access to this content.