The parallelogram-based remote center of motion (RCM) mechanism used for robotic minimally invasive surgery (MIS) manipulators generates a relatively large device footprint. The consequence being larger chance of interference between the robotic arms and restricted workspace, hence obstruct optimal surgical functioning. A novel mechanism with RCM, dual-triangular linkage (DT-linkage), is introduced to reduce the occupied space by the linkage while keeping sufficient space around the incision. Hence, the chance of collisions among arms and tools can be reduced. The concept of this dual-triangular linkage is proven mathematically and validated by a prototype. Auxiliary mechanisms are introduced to remove the singularity at the fully folded configuration. The characterized footprints of this new linkage and the one based on parallelograms are analyzed and compared.

References

1.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2009
, “
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,”
International Symposium on History of Machines and Mechanisms
,
Springer
,
Berlin
, pp.
337
354
.
2.
Madhani
,
A. J.
,
Niemeyer
,
G.
, and
Salisbury
,
J. K.
, Jr.
,
1998
, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,” 1998
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Victoria, Canada, Oct. 13–18, IEEE, Vol.
2
, IEEE, pp.
936
944
.
3.
Rininsland
,
H.
,
1999
, “
Artemis. A Telemanipulator for Cardiac Surgery
,”
Eur. J. Cardiothorac. Surg.
,
16
(
Suppl 2
), pp.
S106
S111
.
4.
Taylor
,
R. H.
,
Menciassi
,
A.
,
Fichtinger
,
G.
, and
Dario
,
P.
,
2008
, “
Medical Robotics and Computer-Integrated Surgery
,”
Springer Handbook of Robotics
,
Springer
,
Berlin
, pp.
1199
1222
.
5.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
6.
Chen
,
C.
, and
Pamieta
,
M.
,
2013
, “
Novel Linkage With Remote Center of Motion
,” 3rd
IFToMM
International Symposium on Robotics and Mechatronics
Singapore, Oct. 2–4, Research Publishing Services, pp.
139
147
.
7.
Michelin
,
M.
,
Poignet
,
P.
, and
Dombre
,
E.
,
2004
, “
Dynamic Task/Posture Decoupling for Minimally Invasive Surgery Motions: Simulation Results
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
, 2004 (
IROS 2004
), Sept. 28–Oct. 2, IEEE, Vol.
4
, pp.
3625
3630
.
8.
Locke
,
R. C.
, and
Patel
,
R. V.
,
2007
, “
Optimal Remote Center-of-Motion Location for Robotics-Assisted Minimally-Invasive Surgery
,” 2007
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, IEEE, pp.
1900
1905
.
9.
Krupa
,
A.
,
Morel
,
G.
, and
De Mathelin
,
M.
,
2004
, “
Achieving High-Precision Laparoscopic Manipulation Through Adaptive Force Control
,”
Adv. Robot.
,
18
(
9
), pp.
905
926
.
10.
Ortmaier
,
T.
, and
Hirzinger
,
G.
,
2000
, “
Cartesian Control Issues for Minimally Invasive Robot Surgery
,”
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
, 2000 (
IROS 2000
), Takamatsu, Japan, IEEE, Vol.
1
, pp.
565
571
.
11.
Ghodoussi
,
M.
,
Butner
,
S. E.
, and
Wang
,
Y.
,
2002
, “
Robotic Surgery—The Transatlantic Case
,”
IEEE International Conference on Robotics and Automation
, 2002,
ICRA’02
, IEEE, Vol. 2, pp.
1882
1888
.
12.
Guerrouad
,
A.
, and
Vidal
,
P.
,
1989
, “
SMOS: Stereotaxical Microtelemanipulator for Ocular Surgery
,”
Annual International Conference of the IEEE Engineering in Images of the Twenty-First Century, Engineering in Medicine and Biology Society
, IEEE, pp.
879
880
.
13.
Hempel
,
E.
,
Fischer
,
H.
,
Gumb
,
L.
,
Höhn
,
T.
,
Krause
,
H.
,
Voges
,
U.
,
Breitwieser
,
H.
,
Gutmann
,
B.
,
Durke
,
J.
,
Bock
,
M.
, and
Melzer
,
A.
,
2003
, “
An MRI-Compatible Surgical Robot for Precise Radiological Interventions
,”
Comput. Aided Surg.
,
8
(
4
), pp.
180
191
.
14.
Taylor
,
R. H.
,
Funda
,
J.
,
Grossman
,
D. D.
,
Karidis
,
J. P.
, and
LaRose
,
D. A.
,
1995
, “
Remote Center-of-Motion Robot for Surgery
,”
U.S. Patent 5,397,323
.
15.
Blumenkranz
,
S. J.
, and
Rosa
,
D. J.
,
2001
, “
Manipulator Positioning Linkage for Robotic Surgery
,” U.S. Patent 6,246,200.
16.
Feng
,
M.
,
Fu
,
Y.
,
Pan
,
B.
, and
Liu
,
C.
,
2012
, “
Development of a Medical Robot System for Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
1
), pp.
85
96
.
17.
Kim
,
K.-Y.
,
Song
,
H.-S.
,
Park
,
S.-H.
,
Lee
,
J.-J.
, and
Yoon
,
Y.-S.
,
2010
, “
Design and Evaluation of a Teleoperated Surgical Manipulator With an Additional Degree of Freedom for Laparoscopic Surgery
,”
Adv. Rob.
,
24
(
12
), pp.
1695
1718
.
18.
Zhu
,
W.-H.
,
Salcudean
,
S.
,
Bachmann
,
S.
, and
Abolmaesumi
,
P.
,
2000
, “
Motion/Force/Image Control of a Diagnostic Ultrasound Robot
,”
ICRA’00
,
IEEE International Conference on Robotics and Automation
, San Francisco, CA, IEEE, Vol. 2, pp.
1580
1585
.
19.
Stoianovici
,
D.
,
Whitcomb
,
L. L.
,
Mazilu
,
D.
,
Taylor
,
R. H.
, and
Kavoussi
,
L. R.
,
2006
, “
Remote Center of Motion Robotic System and Method
,” U.S. Patent 7,021,173.
20.
Lum
,
M. J.
,
Friedman
,
D. C.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
, “
The Raven: Design and Validation of a Telesurgery System
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1183
1197
.
21.
Bai
,
G.
,
Li
,
D.
,
Wei
,
S.
, and
Liao
,
Q.
,
2014
, “
Kinematics and Synthesis of a Type of Mechanisms With Multiple Remote Centers of Motion
,”
Proc. Inst. Mech. Eng.
, Part C,
228
(
18
), pp.
3430
3440
.
22.
Solomon
,
T.
, and
Cooper
,
T.
,
2006
, “
Multiply Strap Drive Trains for Robotic Arms
,” U.S. Patent 20,070,089,557.
23.
Haber
,
G.-P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
,
Forest
,
S.
,
Yang
,
B.
,
Altunrende
,
F.
,
Stein
,
R. J.
, and
Kaouk
,
J. H.
,
2010
, “
Novel Robotic da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.
24.
Thakre
,
A.
,
Bailly
,
Y.
,
Sun
,
L.
,
Van Meer
,
F.
, and
Yeung
,
C.
,
2008
, “
Is Smaller Workspace a Limitation for Robot Performance in Laparoscopy
?”
J. Urol.
,
179
(
3
), pp.
1138
1143
.
25.
Long
,
H.
,
Yang
,
Y.
,
Jingjing
,
X.
, and
Peng
,
S.
,
2016
, “
Type Synthesis of 1r1t Remote Center of Motion Mechanisms Based on Pantograph Mechanisms
,”
ASME J. Mech. Des.
,
138
(
1
), p.
014501
.
26.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Dev.
,
9
(
1
), p.
011003
.
27.
Hadavand
,
M.
,
Mirbagheri
,
A.
,
Behzadipour
,
S.
, and
Farahmand
,
F.
,
2014
, “
A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
10
(
2
), pp.
129
139
.
28.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
29.
Chen
,
C.
,
2012
, “
Mechanical Remote Center of Motion
,” Australian Patent 2012902769.
30.
Muller
,
M.
,
1996
, “
A Novel Classification of Planar Four-Bar Linkages and Its Application to the Mechanical Analysis of Animal Systems
,”
Philos. Trans. R. Soc. London B
,
351
(
1340
), pp.
689
720
.
31.
Kempe
,
A.
,
1877
, “
On Conjugate Four-Piece Linkages
,”
Proc. London Math. Soc.
,
1
(
1
), pp.
133
149
.
32.
Baker
,
J. E.
, and
Hon-Cheung
,
Y.
,
1983
, “
Re-Examination of a Kempe Linkage
,”
Mech. Mach. Theory
,
18
(
1
), pp.
7
22
.
You do not currently have access to this content.