This research reports in situ creep properties of silicon microcantilevers at temperatures ranging from 25 °C to 100 °C under uniaxial compressive stress. Results reveal that in the stress range of 50–150 MPa, the strain rate of the silicon cantilever increases linearly as a function of applied stress. The strain rate (0.2–2.5 ×10-6s-1) was comparable to literature values for bulk silicon reported in the temperature range of 1100–1300 °C at one tenth of the reported stress level. The experiments quantify the extent of the effect of surface stress on uniaxial creep strain rate by measuring surface stress values during uniaxial temperature dependent creep.

References

1.
Tang
,
C. Y.
,
Zhang
,
L. C.
, and
Mylvaganam
,
K.
,
2012
, “
Rate Dependent Deformation of a Silicon Nanowire Under Uniaxial Compression: Yielding, Buckling, and Constitutive Description
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
117
121
.10.1016/j.commatsci.2011.07.037
2.
Herring
,
C.
,
1950
, “
Diffusional Viscosity of a Polycrystalline Solid
,”
J. Appl. Phys.
,
21
(
5
), pp.
437
445
.10.1063/1.1699681
3.
Coble
,
R. L.
,
1963
, “
A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials
,”
J. Appl. Phys.
,
34
(
6
), pp.
1679
1682
.10.1063/1.1702656
4.
Mukherjee
,
A. K.
,
Bird
,
J. E.
, and
Dorn
,
J. E.
,
1969
, “
Experimental Correlations for High-Temperature Creep
,”
Trans. Am. Soc. Metals
,
62
, pp.
155
179
.
5.
Li
,
W. B.
,
Henshall
,
J. L.
,
Hooper
,
R. M.
, and
Easterling
,
K. E.
,
1991
, “
The Mechanisms of Indentation Creep
,”
Acta Metall. Mater.
,
39
(
12
), pp.
3099
3110
.10.1016/0956-7151(91)90043-Z
6.
Lifshitz
,
I. M.
,
1963
, “
On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies
,”
Sov. Phys. JETP-USSR
,
17
(
4
), pp.
909
920
.
7.
Weertman
,
J.
,
1968
, “
Dislocation Climb Theory of Steady-State Creep
,”
ASM Trans. Q.
,
61
(
4
), pp.
681
694
.
8.
Nix
,
W. D.
, and
Ilschner
,
B.
,
1980
, “
Mechanisms Controlling Creep of Single Phase Metals & Alloys
,”
5th International Conference on the Strength of Metals and Alloys (ICSMA 5)
, Aachen, Federal Republic of Germany, August 27–31, Pergamon Press, Oxford, UK.
9.
Sherby
,
O. D.
, and
Burke
,
P. M.
,
1968
, “
Mechanical Behavior of Crystalline Solids at Elevated Temperature
,”
Prog. Mater. Sci.
,
13
, pp.
323
390
.10.1016/0079-6425(68)90024-8
10.
Li
,
H.
, and
Ngan
,
A. H. W.
,
2004
, “
Size Effects of Nanoindentation Creep
,”
J. Mater. Res.
,
19
(
2
), pp.
513
522
.10.1557/jmr.2004.19.2.513
11.
Gan
,
M.
, and
Tomar
,
V.
,
2010
, “
Role of Length Scale and Temperature in Indentation Induced Creep Behavior of Polymer Derived Si-C-O Ceramics
,”
Mater. Sci. Eng., A
,
527
(
29–30
), pp.
7615
7623
.10.1016/j.msea.2010.08.016
12.
Feng
,
G.
, and
Ngan
,
A. H. W.
,
2001
, “
Creep and Strain Burst in Indium and Aluminium During Nanoindentation
,”
Scr. Mater.
,
45
(
8
), pp.
971
976
.10.1016/S1359-6462(01)01120-4
13.
Cao
,
Z. H.
,
Li
,
P. Y.
,
Lu
,
H. M.
,
Huang
,
Y. L.
,
Zhou
,
Y. C.
, and
Meng
,
X. K.
,
2009
, “
Indentation Size Effects on the Creep Behavior of Nanocrystalline Tetragonal Ta Films
,”
Scr. Mater.
,
60
(
6
), pp.
415
418
.10.1016/j.scriptamat.2008.11.016
14.
Mayo
,
M. J.
, and
Nix
,
W. D.
,
1988
, “
A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38 wt. % Pb
,”
Acta Metall.
,
36
(
8
), pp.
2183
2192
.10.1016/0001-6160(88)90319-7
15.
Lucas
,
B.
, and
Oliver
,
W.
,
1999
, “
Indentation Power-Law Creep of High-Purity Indium
,”
Metall. Mater. Trans. A
,
30
(
3
), pp.
601
610
.10.1007/s11661-999-0051-7
16.
Asif
,
S. A. S.
, and
Pethica
,
J. B.
,
1997
, “
Nanoindentation Creep of Single-Crystal Tungsten and Gallium Arsenide
,”
Philos. Mag. A
,
76
(
6
), pp.
1105
1118
.10.1080/01418619708214217
17.
Alexander
,
H.
, and
Haasen
,
P.
,
1986
, “
Dislocations in the Diamond Structure
,”
Solid State Physics: Advances in Research and Applications
,
F.
Seitz
,
D.
Turnbull
, and
H.
Ehrenreich
, eds., Academic Press, New York.
18.
Myshlyaev
,
M. M.
,
Nikitenko
,
V. I.
, and
Nesterenko
,
V. I.
,
1969
, “
Dislocation Structure and Macroscopic Characteristics of Plastic Deformation at Creep of Silicon Crystals
,”
Phys. Status Solidi C
,
36
(
1
), pp.
89
96
.10.1002/pssb.19690360108
19.
Taylor
,
T. A.
, and
Barrett
,
C. R.
,
1972
, “
Creep and Recovery of Silicon Single Crystals
,”
Mater. Sci. Eng.
,
10
, pp.
93
102
.10.1016/0025-5416(72)90073-0
20.
Walters
,
D. S.
, and
Spearing
,
S. M.
,
2000
, “
On the Flexural Creep of Single-Crystal Silicon
,”
Scr. Mater.
,
42
(
8
), pp.
769
774
.10.1016/S1359-6462(99)00428-5
21.
Yao
,
S. K.
,
Xu
,
D. H.
,
Xiong
,
B.
, and
Wang
,
Y. L.
,
2013
, “
The Plastic and Creep Behavior of Silicon Microstructure at High Temperature
,”
The 17th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS & EUROSENSORS XXVII
), Transducers & Eurosensors XXVII, Barcelona, Spain, pp. 159–162.10.1109/Transducers.2013.6626726
22.
Huff
,
M. A.
,
Nikolich
,
A. D.
, and
Schmidt
,
M. A.
,
1993
, “
Design of Sealed Cavity Microstructures Formed by Silicon Wafer Bonding
,”
J. Microelectromech. Syst.
,
2
(
2
), pp.
74
81
.10.1109/84.232603
23.
Yasutake
,
K.
,
Murakami
,
J.
,
Umeno
,
M.
, and
Kawabe
,
H.
,
1982
, “
Mechanical Properties of Heat-Treated CZ-Si Wafers From Brittle to Ductile Temperature Range
,”
Jpn. J. Appl. Phys., Part 1
,
21
(
5
), pp.
288
290
.10.1143/JJAP.21.L288
24.
Li
,
H.
, and
Ngan
,
A. H. W.
,
2005
, “
Indentation Size Effects on the Strain Rate Sensitivity of Nanocrystalline Ni-25 at. %Al Thin Films
,”
Scr. Mater.
,
52
(
9
), pp.
827
831
.10.1016/j.scriptamat.2005.01.018
25.
Ma
,
Z. S.
,
Long
,
S. G.
,
Zhou
,
Y. C.
, and
Pan
,
Y.
,
2008
, “
Indentation Scale Dependence of Tip-in Creep Behavior in Ni Thin Films
,”
Scr. Mater.
,
59
(
2
), pp.
195
198
.10.1016/j.scriptamat.2008.03.014
26.
Gan
,
M.
, and
Tomar
,
V.
,
2011
, “
Scale and Temperature Dependent Creep Modeling and Experiments in Materials
,”
JOM
,
63
(
9
), pp.
27
34
.10.1007/s11837-011-0154-7
27.
Wolf
,
I. D.
,
1996
, “
Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits
,”
Semicond. Sci. Technol.
,
11
(
2
), pp.
139
154
.10.1088/0268-1242/11/2/001
28.
Anastassakis
,
E.
,
Pinczuk
,
A.
,
Burstein
,
E.
,
Pollak
,
F. H.
, and
Cardona
,
M.
,
1970
, “
Effect of Static Uniaxial Stress on the Raman Spectrum of Silicon
,”
Solid State Commun.
,
8
(
2
), pp.
133
138
.10.1016/0038-1098(70)90588-0
29.
Ganesan
,
S.
,
Maradudin
,
A. A.
, and
Oitmaa
,
J.
,
1970
, “
A Lattice Theory of Morphic Effects in Crystals of the Diamond Structure
,”
Ann. Phys.
,
56
(
2
), pp.
556
594
.10.1016/0003-4916(70)90029-1
30.
Animoto
,
S. T.
,
Chang
,
D. J.
, and
Birkitt
,
A. D.
,
1998
, “
Stress Measurement in MEMS Using Raman Spectroscopy
,”
Proc. SPIE
,
3512
, pp. 123–129.10.1117/12.324091
31.
Nye
,
J. F.
,
1985
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford University
, Clarendon Press, Oxford, UK.
32.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
(
1
), pp.
153
156
.10.1063/1.1713863
33.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon, Oxford
,
UK
.
34.
Gan
,
M.
, and
Tomar
,
V.
,
2014
, “
An in Situ Platform for the Investigation of Raman Shift in Micro-Scale Silicon Structures as a Function of Mechanical Stress and Temperature Increase
,”
Rev. Sci. Instrum.
,
85
(
1
), p.
013902
.10.1063/1.4861201
35.
Kang
,
Y.
,
Qiu
,
Y.
,
Lei
,
Z.
, and
Hu
,
M.
,
2005
, “
An Application of Raman Spectroscopy on the Measurement of Residual Stress in Porous Silicon
,”
Opt. Lasers Eng.
,
43
(
8
), pp.
847
855
.10.1016/j.optlaseng.2004.09.005
36.
Nolan
,
M.
,
Perova
,
T.
,
Moore
,
R. A.
,
Moore
,
C. J.
,
Berwick
,
K.
, and
Gamble
,
H. S.
,
2000
, “
Micro-Raman Study of Stress Distribution Generated in Silicon During Proximity Rapid Thermal Diffusion
,”
Mater. Sci. Eng., B
,
73
(
1–3
), pp.
168
172
.10.1016/S0921-5107(99)00454-7
37.
Papadimitriou
,
D.
,
Bitsakis
,
J.
,
Lopez-Villegas
,
J. M.
,
Samitier
,
J.
, and
Morante
,
J. R.
,
1999
, “
Depth Dependence of Stress and Porosity in Porous Silicon: A Micro-Raman Study
,”
Thin Solid Films
,
349
(
1–2
), pp.
293
297
.10.1016/S0040-6090(99)00213-8
38.
Schmidt
,
U.
,
Ibach
,
W.
,
Muller
,
J.
,
Weishaupt
,
K.
, and
Hollricher
,
O.
,
2006
, “
Raman Spectral Imaging—A Nondestructive, High Resolution Analysis Technique for Local Stress Measurements in Silicon
,”
Vib. Spectrosc.
,
42
(
1
), pp.
93
97
.10.1016/j.vibspec.2006.01.005
39.
Li
,
Q.
,
Qiu
,
W.
,
Tan
,
H.
,
Guo
,
J.
, and
Kang
,
Y.
,
2010
, “
Micro-Raman spectroscopy Stress Measurement Method for Porous Silicon Film
,”
Opt. Lasers Eng.
,
48
(
11
), pp.
1119
1125
.10.1016/j.optlaseng.2009.12.020
40.
Vetushka
,
A.
,
Ledinský
,
M.
,
Stuchlík
,
J.
,
Mates
,
T.
,
Fejfar
,
A.
, and
Kočka
,
J.
,
2008
, “
Mapping of Mechanical Stress in Silicon Thin Films on Silicon Cantilevers by Raman Microspectroscopy
,”
J. Non-Cryst. Solids
,
354
(
19–25
), pp.
2235
2237
.10.1016/j.jnoncrysol.2007.09.072
41.
Naumenko
,
D.
,
Snitka
,
V.
,
Duch
,
M.
,
Torras
,
N.
, and
Esteve
,
J.
,
2012
, “
Stress Mapping on the Porous Silicon Microcapsules by Raman Microscopy
,”
Microelectron. Eng.
,
98
, pp.
488
491
.10.1016/j.mee.2012.07.089
42.
Amer
,
M. S.
,
Durgam
,
L.
, and
El-Ashry
,
M. M.
,
2006
, “
Raman Mapping of Local Phases and Local Stress Fields in Silicon-Silicon Carbide Composites
,”
Mater. Chem. Phys.
,
98
(
2–3
), pp.
410
414
.10.1016/j.matchemphys.2005.09.066
43.
Bauer
,
M.
,
Gigler
,
A. M.
,
Richter
,
C.
, and
Stark
,
R. W.
,
2008
, “
Visualizing Stress in Silicon Micro Cantilevers Using Scanning Confocal Raman Spectroscopy
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
1443
1446
.10.1016/j.mee.2008.01.089
44.
Kouteva-Arguirova
,
S.
,
Seifert
,
W.
,
Kittler
,
M.
, and
Reif
,
J.
,
2003
, “
Raman Measurement of Stress Distribution in Multicrystalline Silicon Materials
,”
Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
,
102
(
1–3
), pp.
37
42
.10.1016/S0921-5107(02)00744-4
45.
Goodman
,
G. G.
,
Pajcini
,
V.
,
Smith
,
S. P.
, and
Merrill
,
P. B.
,
2005
, “
Characterization of Strained Si Structures Using SIMS and Visible Raman
,”
Mater. Sci. Semicond. Process.
,
8
(
1–3
), pp.
255
260
.10.1016/j.mssp.2004.09.054
46.
Langdo
,
T. A.
,
Currie
,
M. T.
,
Lochtefeld
,
A.
,
Hammond
,
R.
,
Carlin
,
J. A.
,
Erdtmann
,
M.
,
Braithwaite
,
G.
,
Yang
,
V. K.
,
Vineis
,
C. J.
,
Badawi
,
H.
, and
Bulsara
,
M. T.
,
2003
, “
SiGe-Free Strained Si on Insulator by Wafer Bonding and Layer Transfer
,”
Appl. Phys. Lett.
,
82
(
24
), pp.
4256
4258
.10.1063/1.1581371
47.
Urena
,
F.
,
Olsen
,
S. H.
,
Siller
,
L.
,
Bhaskar
,
U.
,
Pardoen
,
T.
, and
Raskin
,
J.-P.
,
2012
, “
Strain in Silicon Nanowire Beams
,”
J. Appl. Phys.
,
112
(
11
), p.
114506
.10.1063/1.4765025
You do not currently have access to this content.