Bioprinting is a technology that allows making complex tissues from the bottom-up. The need to control accurately both the resolution of the printed droplet and the precision of its positioning was reported. Using a bioink with 1 × 108 cells/mL, we present evidence that the laser-assisted bioprinter (LAB) can deposit droplets of functional mesenchymal stem cells with a resolution of 138 ± 28 μm and a precision of 16 ± 13 μm. We demonstrate that this high printing definition is maintained in three dimensions.
Issue Section:
Research Papers
Keywords:
Biotechnology
References
1.
Murphy
, S. V.
, and Atala
, A.
, 2014
, “3D Bioprinting of Tissues and Organs
,” Nat. Biotechnol.
, 32
(8
), pp. 773
–785
.2.
Guillemot
, F.
, Mironov
, V.
, and Nakamura
, M.
, 2010
, “Bioprinting Is Coming of Age: Report From the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09)
,” Biofabrication
, 2
(1
), p. 010201
.3.
Lee
, W.
, Debasitis
, J. C.
, Lee
, V. K.
, Lee
, J.-H.
, Fischer
, K.
, Edminster
, K.
, Park
, J.-K.
, and Yoo
, S.-S.
, 2009
, “Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes Through Three-Dimensional Freeform Fabrication
,” Biomaterials
, 30
(8
), pp. 1587
–1595
.4.
Michael
, S.
, Sorg
, H.
, Peck
, C.-T.
, Koch
, L.
, Deiwick
, A.
, Chichkov
, B.
, Vogt
, P. M.
, and Reimers
, K.
, 2013
, “Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice
,” PLoS One
, 8
(3
), p. e57741
.5.
Koch
, L.
, Kuhn
, S.
, Sorg
, H.
, Gruene
, M.
, Schlie
, S.
, Gaebel
, R.
, Polchow
, B.
, Reimers
, K.
, Stoelting
, S.
, Ma
, N.
, Vogt
, P. M.
, Steinhoff
, G.
, and Chichkov
, B.
, 2010
, “Laser Printing of Skin Cells and Human Stem Cells
,” Tissue Eng., Part C
, 16
(5
), pp. 847
–854
.6.
Gurkan
, U. A.
, El Assal
, R.
, Yildiz
, S. E.
, Sung
, Y.
, Trachtenberg
, A. J.
, Kuo
, W. P.
, and Demirci
, U.
, 2014
, “Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets
,” Mol. Pharm.
, 11
(7
), pp. 2151
–2159
.7.
Cui
, X.
, Breitenkamp
, K.
, Finn
, M. G.
, Lotz
, M.
, and D'Lima
, D. D.
, 2012
, “Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology
,” Tissue Eng., Part A
, 18
(11–12
), pp. 1304
–1312
.8.
Catros
, S.
, Fricain
, J.-C.
, Guillotin
, B.
, Pippenger
, B.
, Bareille
, R.
, Remy
, M.
, Lebraud
, E.
, Desbat
, B.
, Amédée
, J.
, and Guillemot
, F.
, 2011
, “Laser-Assisted Bioprinting for Creating On-Demand Patterns of Human Osteoprogenitor Cells and Nano-Hydroxyapatite
,” Biofabrication
, 3
(2
), p. 025001
.9.
Jakab
, K.
, Norotte
, C.
, Damon
, B.
, Marga
, F.
, Neagu
, A.
, Besch-Williford
, C. L.
, Kachurin
, A.
, Church
, K. H.
, Park
, H.
, Mironov
, V.
, Markwald
, R.
, Vunjak-Novakovic
, G.
, and Forgacs
, G.
, 2008
, “Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures
,” Tissue Eng., Part A
, 14
(3
), pp. 413
–421
.10.
Cui
, X.
, and Boland
, T.
, 2009
, “Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
,” Biomaterials
, 30
(31
), pp. 6221
–6227
.11.
Wu
, P. K.
, and Ringeisen
, B. R.
, 2010
, “Development of Human Umbilical Vein Endothelial Cell (HUVEC) and Human Umbilical Vein Smooth Muscle Cell (HUVSMC) Branch/Stem Structures on Hydrogel Layers Via Biological Laser Printing (BioLP)
,” Biofabrication
, 2
(1
), p. 014111
.12.
Ouyang
, L.
, Yao
, R.
, Chen
, X.
, Na
, J.
, and Sun
, W.
, 2015
, “3D Printing of HEK 293FT Cell-Laden Hydrogel Into Macroporous Constructs With High Cell Viability and Normal Biological Functions
,” Biofabrication
, 7
(1
), p. 015010
.13.
Guillotin
, B.
, and Guillemot
, F.
, 2011
, “Cell Patterning Technologies for Organotypic Tissue Fabrication
,” Trends Biotechnol.
, 29
(4
), pp. 183
–190
.14.
Xu
, C.
, Zhang
, M.
, Huang
, Y.
, Ogale
, A.
, Fu
, J.
, and Markwald
, R. R.
, 2014
, “Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,” Langmuir
, 30
(30
), pp. 9130
–9138
.15.
Guillotin
, B.
, Souquet
, A.
, Catros
, S.
, Duocastella
, M.
, Pippenger
, B.
, Bellance
, S.
, Bareille
, R.
, Rémy
, M.
, Bordenave
, L.
, Amédée
, J.
, and Guillemot
, F.
, 2010
, “Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization
,” Biomaterials
, 31
(28
), pp. 7250
–7256
.16.
Guillemot
, F.
, Souquet
, A.
, Catros
, S.
, Lopez
, J.
, Faucon
, M.
, Pippenger
, B.
, Bareille
, R.
, Chollet
, C.
, Rémy
, M.
, Chabassier
, P.
, Durrieu
, M.-C.
, Fricain
, J.-C.
, and Amédée
, J.
, 2008
, “High-Throughput Laser Printing of Cells and Biomaterials for Tissue Engineering
,” Acta Biomater.
, 6
(7
), pp. 2494
–2500
.17.
Guillemot
, F.
, Souquet
, A.
, Catros
, S.
, and Guillotin
, B.
, 2010
, “Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering
,” Nanomedicine
, 5
(3
), pp. 507
–515
.18.
Ali
, M.
, Pages
, E.
, Ducom
, A.
, Fontaine
, A.
, and Guillemot
, F.
, 2014
, “Controlling Laser-Induced Jet Formation for Bioprinting Mesenchymal Stem Cells With High Viability and High Resolution
,” Biofabrication
, 6
(4
), p. 045001
.19.
Devillard
, R.
, Pagès
, E.
, Correa
, M. M.
, Kériquel
, V.
, Rémy
, M.
, Kalisky
, J.
, Ali
, M.
, Guillotin
, B.
, and Guillemot
, F.
, 2014
, “Cell Patterning by Laser-Assisted Bioprinting
,” Methods Cell Biol.
, 119
, pp. 159
–174
.20.
Johnson
, K.
, Hashimoto
, S.
, Lotz
, M.
, Pritzker
, K.
, Goding
, J.
, and Terkeltaub
, R.
, 2001
, “Up-Regulated Expression of the Phosphodiesterase Nucleotide Pyrophosphatase Family Member PC-1 Is a Marker and Pathogenic Factor for Knee Meniscal Cartilage Matrix Calcification
,” Arthritis Rheum.
, 44
(5
), pp. 1071
–1081
.21.
Hsiong
, S. X.
, Boontheekul
, T.
, Huebsch
, N.
, and Mooney
, D. J.
, 2009
, “Cyclic Arginine-Glycine-Aspartate Peptides Enhance Three-Dimensional Stem Cell Osteogenic Differentiation
,” Tissue Eng., Part A
, 15
(2
), pp. 263
–272
.22.
Gruene
, M.
, Unger
, C.
, Koch
, L.
, Deiwick
, A.
, and Chichkov
, B.
, 2011
, “Dispensing Pico to Nanolitre of a Natural Hydrogel by Laser-Assisted Bioprinting
,” Biomed. Eng. Online
, 10
, p. 19
.23.
Eiraku
, M.
, Takata
, N.
, Ishibashi
, H.
, Kawada
, M.
, Sakakura
, E.
, Okuda
, S.
, Sekiguchi
, K.
, Adachi
, T.
, and Sasai
, Y.
, 2011
, “Self-Organizing Optic-Cup Morphogenesis in Three-Dimensional Culture
,” Nature
, 472
(7341
), pp. 51
–56
.24.
Lutolf
, M. P.
, and Hubbell
, J. A.
, 2005
, “Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering
,” Nat. Biotechnol.
, 23
(1
), pp. 47
–55
.Copyright © 2015 by ASME
You do not currently have access to this content.