Ball milling (BM) offers a flexible process for nanomanufacturing of reactive bimetallic multiscale particulates (nanoheaters) for self-heated microjoining engineering materials and biomedical tooling. This paper introduces a mechanics-based process model relating the chaotic dynamics of BM with the random fractal structures of the produced particulates, emphasizing its fundamental concepts, underlying assumptions, and computation methods. To represent Apollonian globular and lamellar structures, the simulation employs warped ellipsoidal (WE) primitives of elasto-plastic strain-hardening materials, with Maxwell–Boltzmann distributions of ball kinetics and thermal transformation of hysteretic plastic, frictional, and residual stored energetics. Interparticle collisions are modeled via modified Hertzian contact impact mechanics, with local plastic deformation yielding welded microjoints and resulting in cluster assembly into particulates. The model tracks the size and diversity of such particulate populations as the process evolves via sequential collision and integration events. The simulation was shown to run in real-time computation speeds on modest hardware, and match successfully the fractal dimension and contour shape of experimental ball-milled Al–Ni particulate micrographs. Thus, the model serves as a base for the design of a feedback control system for continuous BM.

References

1.
Gu
,
Z.
,
Cui
,
Q.
,
Chen
,
J.
,
Buckley
,
J.
,
Ando
,
T.
,
Erdeniz
,
D.
,
Wong
,
P.
,
Hadjiafxenti
,
A.
,
Epameinonda
,
P.
,
Gunduz
, I
. E.
,
Rebholz
,
C.
, and
Doumanidis
,
C. C.
,
2013
, “
Fabrication, Characterization and Applications of Novel Nanoheater Structures
,”
Surf. Coat. Technol.
,
215
, pp.
493
502
.
2.
Gunduz
, I
. E.
,
Fadenberger
,
K.
,
Kokonou
,
M.
,
Rebholz
,
C.
,
Doumanidis
,
C. C.
, and
Ando
,
T.
,
2009
, “
Modeling of the Self Propagating Reactions of Nickel and Aluminum Multilayered Foils
,”
J. Appl. Phys.
,
115
, p.
074903
.
3.
Hadjiafxenti
,
A.
,
Gunduz
, I
. E.
,
Doumanidis
,
C. C.
, and
Rebholz
,
C.
,
2014
, “
Spark Ignitable Ball Milled Powders of Al and Ni at NiAl Composition
,”
Vacuum
,
101
, pp.
275
278
.
4.
Mandelbrot
,
B.
,
1982
,
The Fractal Geometry of Nature
,
W. H. Freeman & Co
,
New York
.
5.
Borkovec
,
M.
,
De Paris
,
W.
, and
Peikert
,
R.
,
1994
, “
The Fractal Dimension of the Apollonian Sphere Packing
,”
Fractals
,
2
(
4
), pp.
521
526
.
6.
Gunduz
, I
. E.
,
Onel
,
S.
,
Doumanidis
,
C. C.
,
Rebholz
,
C.
, and
Son
,
S. F.
,
2015
, “
Simulations of Nanoscale Ni/Al Multilayer Foils With Intermediate Ni2Al3 Growth
,”
J. Appl. Phys.
,
117
(21), p.
214904
.
7.
Hadjiafxenti
,
A.
,
Gunduz
, I
. E.
,
Tsotsos
,
C.
,
Kyratsi
,
T.
,
Aouadi
,
S. M.
,
Doumanidis
,
C. C.
, and
Rebholz
,
C.
,
2010
, “
The Influence of Structure on Thermal Behavior of Reactive Al-Ni Powder Mixtures Formed by Ball Milling
,”
J. Alloys Compd.
,
505
(2), pp.
467
471
.
8.
Gunduz
, I
. E.
,
Kyriakou
,
A.
,
Vlachos
,
N.
,
Kyratsi
,
T.
,
Doumanidis
,
C. C.
,
Son
,
S.
, and
Rebholz
,
C.
,
2014
, “
Spark Ignitable Ni-Al Ball Milled Powders for Bonding Applications
,”
Surf. Coat. Technol.
,
260
, pp.
396
400
.
9.
Magini
,
M.
,
Iasonna
,
A.
, and
Padella
,
F.
,
1996
, “
Ball Milling: An Experimental Support to the Energy Transfer Evaluated by the Collision Model
,”
Scr. Mater.
,
34
(
1
), pp.
13
19
.
10.
Mio
,
H.
,
Kano
,
J.
,
Saito
,
F.
, and
Kaneko
,
K.
,
2002
, “
Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling
,”
Mater. Sci. Eng., A
332
(1–2), pp.
75
80
.
11.
Abdellaoui
,
M.
, and
Gaffet
,
E.
,
1995
, “
The Physics of Mechanical Alloying in a Planetary Ball Mill: Mathematical Treatment
,”
Acta Metall. Mater.
,
43
(
3
), pp.
1087
1098
.
12.
Venugopal
,
R.
, and
Rajamani
,
R. K.
,
2001
, “
3D Simulation of Charge Motion in Tumbling Mills by the Discrete Element Method
,”
Powder Technol.
,
115
(2), pp.
157
166
.
13.
Mishra
,
B. K.
,
2003
, “
A Review of Computer Simulation of Tumbling Mills by the Discrete Element Method: Part I—Contact Mechanics
,”
Int. J. Miner. Process
,
71
(1–4), pp.
73
93
.
14.
Rimon
,
E.
, and
Boyd
,
S.
,
1997
, “
Obstacle Collision Detection Using Best Ellipsoid Fit
,”
J. Intell. Rob. Syst.
,
18
(2), pp.
105
126
.
15.
Choi
,
Y.-K.
,
Chang
,
J.-W.
,
Wang
,
W.
,
Kim
,
M.-S.
, and
Elber
,
G.
,
2006
, “
Real-Time Continuous Collision Detection for Moving Ellipsoids Under Affine Transformation
,” HKU CS Technical Report No. TR-2006-02.
16.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2007
, “
Review and Extension of Normal Force Models for the Discrete Element Method
,”
Powder Technol.
,
171
(3), pp.
157
173
.
17.
Rogachev
,
A. S.
,
Moskovskikh
,
D. O.
,
Nepapushev
,
A. A.
,
Sviridova
,
T. A.
,
Vadchenko
,
S. G.
,
Rogachev
,
S. A.
, and
Mukasyan
,
A. S.
,
2015
, “
Experimental Investigation of Milling Regimes in Planetary Ball Mill and Their Influence on Structure and Reactivity of Gasless Powder Exothermic Mixtures
,”
Powder Technol.
,
274
, pp.
44
52
.
18.
Maxwell
,
J. C.
,
1860
, “
Illustrations of the Dynamic Theory of Gases Part I: On the Motions and Collisions of Perfectly Elastic Spheres
,”
Philos. Mag.
,
19
(
4
), pp.
19
32
.
19.
Sackfield
,
A.
, and
Hills
,
D. A.
,
1983
, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal.
,
18
(2), pp.
101
108
.
20.
Dwyer-Joyce
,
R. S.
,
1997
, “
Contact Mechanics
,” Part 3 in Tribological Design Data, IMechE Tribology Group.
21.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1971
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
22.
Hausdorff
,
F.
,
1919
, “
Dimension und Äußeres Maß
,”
Math. Ann.
,
79
(
1–2
), pp.
157
179
.
23.
Reuter
,
M.
,
1999
, “
Fraktaldimension von Grauwertbildern
,” University of Hannover,
Hannover, Germany
.
You do not currently have access to this content.