Abstract

This article presents a spindle condition monitoring methodology using a low-power smart vibration sensor and a near real-time deep neural network (DNN) classifier. The most frequent spindle failures, such as imbalance, ingression, and evidence of a crash with the workpiece, are analyzed in this study. Experiments were designed to induce various failure events to monitor the spindle behavior using conventional vibration, current and temperature sensors, and an intelligent vibration sensor. The smart sensor is a device with internal signal processing identifying eight dominant frequencies and the amplitude/power distributions. It requires low power and generates narrow bandwidth messages that can be communicated wirelessly. A Fog device and a test plan are designed to monitor and store a dataset needed to train a DNN classifier. The Fog device generates temperature, current, and vibration signals from sensors connected to the spindle and sends them to data storage in the cloud. The signals were analyzed using both conventional vibration analysis and Artificial Intelligence-based classifiers. Metrics such as crest factor, skewness, kurtosis, and overall enveloping were used to assess their ability to identify the failure condition. The data from the smart sensor are used to train an optimized DNN, and the spindle defect classification performance is measured. With 960 data points per failure mode and training data taken over 960 min of operation, the optimized DNNs can classify the spindle states with an accuracy of 98%. The study shows real-time spindle condition classification feasibility over long periods using inexpensive and low-power smart vibration sensors.

References

1.
De Silva
,
C. W.
,
2005
,
Vibration and Shock Handbook
,
Taylor & Francis
,
Boca Raton, FL
.
2.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Sig. Process.
,
20
(
7
), pp.
1483
1510
.
3.
Kirianaki
,
N. V.
,
Yurish
,
S. Y.
,
Shpak
,
N. O.
, and
Deynega
,
V. P.
,
2002
,
Data Acquisition and Signal Processing for Smart Sensors
,
John Wiley & Sons, Ltd
,
Chichester, UK
, pp.
i
xvii
.
4.
Sabato
,
A.
,
Niezrecki
,
C.
, and
Fortino
,
G.
,
2017
, “
Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review
,”
IEEE Sens. J.
,
17
(
2
), pp.
226
235
.
5.
Varanis
,
M.
,
Silva
,
A.
,
Mereles
,
A.
, and
Pederiva
,
R.
,
2018
, “
MEMS Accelerometers for Mechanical Vibrations Analysis: A Comprehensive Review With Applications
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
11
), p.
527
.
6.
Rastegari
,
A.
, and
Bengtsson
,
M.
,
2014
, “
Implementation of Condition Based Maintenance in Manufacturing Industry: A Pilot Case Study
,”
2014 International Conference on Prognostics and Health Management
,
Spokane, WA
,
June 22–25
, pp.
1
8
.
7.
Randall
,
R. B.
,
2021
,
Vibration-Based Condition Monitoring: Industrial, Automotive and Aerospace Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Sig. Process
,
35
(
1–2
), pp.
108
126
.
9.
Law
,
L.-S.
,
Kim
,
J. H.
,
Liew
,
W. Y. H.
, and
Lee
,
S.-K.
,
2012
, “
An Approach Based on Wavelet Packet Decomposition and Hilbert–Huang Transform (WPD–HHT) for Spindle Bearings Condition Monitoring
,”
Mech. Syst. Sig. Process
,
33
, pp.
197
211
.
10.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Sig. Process
,
108
, pp.
33
47
.
11.
Awadallah
,
M. A.
, and
Morcos
,
M. M.
,
2003
, “
Application of AI Tools in Fault Diagnosis of Electrical Machines and Drives—An Overview
,”
IEEE Trans. Energy Convers.
,
18
(
2
), pp.
245
251
.
12.
Cao
,
H.
,
Zhang
,
X.
, and
Chen
,
X.
,
2017
, “
The Concept and Progress of Intelligent Spindles: A Review
,”
Int. J. Mach. Tools Manuf.
,
112
, pp.
21
52
.
13.
International Organization for Standardization
, “
Mechanical Vibration of Rotating and Reciprocating Machinery, Requirements for Instruments for Measuring Vibration Severity (ISO 2954_2012)
,” https://www.iso.org/standard/21835.html, Accessed August 15, 2021.
14.
SKF Corporation
,
2022
, “
Spectrum Analysis, the Key Features of Analyzing Spectra
,”
Condition Monitoring Center
,
San Diego, CA
, https://www.skf.com/binaries/pub12/Images/0901d1968024acef-CM5118-EN-Spectrum-Analysis_tcm_12-113997.pdf, Accessed November 20, 2021.
15.
SKF Corporation
,
2021
, “
SKF Microlog Analyzer Accessories Catalog
,” SKF Group, https://www.skf.com/binaries/pub12/Images/0901d19680cbe36e-11643_9-EN-SKF-Microlog-Accessories-Catalog_tcm_12-584048.pdf#cid-584048, Accessed November 20, 2021.
16.
Scheffer
,
C.
, and
Girdhar
,
P.
,
Practical Machinery Vibration Analysis and Predictive Maintenance
, 1st ed,
Newnes Books
,
Burlington, MA
, https://www.elsevier.com/books/practical-machinery-vibration-analysis-and-predictive-maintenance/scheffer/978-0-7506-6275-8, Accessed May 13, 2021.
17.
McInerny
,
S. A.
, and
Dai
,
Y.
,
2003
, “
Basic Vibration Signal Processing for Bearing Fault Detection
,”
IEEE Trans. Educ.
,
46
(
1
), pp.
149
156
.
18.
Chiang
,
M.
, and
Zhang
,
T.
,
2016
, “
Fog and IoT: An Overview of Research Opportunities
,”
IEEE Internet Things J.
,
3
(
6
), pp.
854
864
.
19.
Lora Alliance
,
2015
, “What Is LoRaWAN a Technical Overview of Lora and LoRaWan,” Technical Marketing Workgroup, https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf, Accessed June 2, 2021.
21.
OMC-Stepper
,
2019
, “GDZ80-1.5B Spindle Motor Drawing,” https://www.omc-stepperonline.com/download/GDZ80-1.5B.pdf, Accessed June 8, 2021.
22.
Wilcoxon
,
2018
, “General Purpose Accelerometer,” Wilcoxon Sensing Technologies Frederick, MD, https://www.mouser.com/datasheet/2/18/86A_spec_(98692)E.2-1595815.pdf, Accessed June 10, 2021.
23.
Extech
,
2021
, “Single or 3-Phase True RMS 1000A Power Clamp Meter With Non-Contact Voltage Detector and PC Interface,” Teledyne FLIR LLC, http://www.extech.com/products/resources/PQ2071_UM-en.pdf, Accessed June 8, 2021.
24.
OASIS Corporation
,
2019
, “OASIS MQTT Version 5.0,” OASIS Standards Track Work Product, https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf, Accessed June 15, 2021.
25.
Shen
,
C.
,
Wang
,
G.
,
Wang
,
S.
, and
Liu
,
G.
,
2011
, “
The Imbalance Source of Spindle-Tool System and Influence to Machine Vibration Characteristics
,”
2011 s International Conference on Digital Manufacturing & Automation
,
Zhangjiajie, Hunan, China
,
Aug.
, pp.
1288
1291
.
26.
Chang
,
Z.
,
Jia
,
Q.
,
Yuan
,
X.
, and
Chen
,
Y.
,
2017
, “
Main Failure Mode of oil-air Lubricated Rolling Bearing Installed in High Speed Machining
,”
Tribol. Int.
,
112
, pp.
68
74
.
27.
Rafiee
,
J.
,
Arvani
,
F.
,
Harifi
,
A.
, and
Sadeghi
,
M. H.
,
2007
, “
Intelligent Condition Monitoring of a Gearbox Using Artificial Neural Network
,”
Mech. Syst. Sig. Process
,
21
(
4
), pp.
1746
1754
.
28.
Saravanan
,
S.
,
Yadava
,
G. S.
, and
Rao
,
P. V.
,
2006
, “
Condition Monitoring Studies on Spindle Bearing of a Lathe
,”
Int. J. Adv. Manuf. Technol.
,
28
(
9–10
), pp.
993
1005
.
29.
Randall
,
R. B.
,
Antoni
,
J.
, and
Chobsaard
,
S.
,
2001
, “
The Relationship Between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals
,”
Mech. Syst. Sig. Process
,
15
(
5
), pp.
945
962
.
30.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
31.
Jia
,
F.
,
Lei
,
Y.
,
Lin
,
J.
,
Zhou
,
X.
, and
Lu
,
N.
,
2016
, “
Deep Neural Networks: A Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery With Massive Data
,”
Mech. Syst. Signal Process
,
72–73
, pp.
303
315
.
32.
Fisher
,
A.
,
Rudin
,
C.
, and
Dominici
,
F.
, “
All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously
,”
J. Mach. Lear. Res.
,
20
, pp.
1
81
.
33.
Peterson
,
L. E.
,
2009
, “
K-Nearest Neighbor
,”
Scholarpedia
,
4
(
2
), p.
1883
.
34.
Noble
,
W. S.
,
2006
, “
What Is a Support Vector Machine?
,”
Nat. Biotechnol.
,
24
(
12
), pp.
1565
1567
.
35.
Neill
,
J. O.
,
2020
, “
An Overview of Neural Network Compression
,”
arXiv:2006.03669v2
. https://arxiv.org/abs/2006.03669
36.
Claesen
,
M.
, and
Moor
,
B. D.
,
2015
, “
Hyperparameter Search in Machine Learning
,”
arXiv:1502.02127v2
. https://arxiv.org/abs/1502.02127
37.
Liang
,
C.-J. M.
,
Xue
,
H.
,
Yang
,
M.
,
Zhou
,
L.
,
Zhu
,
L.
,
Li
,
Z. L.
,
Wang
,
Z.
,
Chen
,
Q.
,
Zhang
,
Q.
,
Liu
,
C.
,
Dai
,
W.
,
2020
, “
AutoSys: The Design and Operation of Learning-Augmented Systems
,”
2020 Annual Technical Conference
,
Virtual
,
July 15–17
, pp.
323
336
.
38.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “PyTorch: An Imperative Style: High-Performance Deep Learning Library,”
Advances in Neural Information Processing Systems 32
,
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
, eds.,
Vancouver, Canada
,
Dec. 8–14
,
Curran Associates, Inc.
, pp.
8024
8035
, http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf, Accessed November 25, 2021.
39.
Bergstra
,
J.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “
Algorithms for Hyper-Parameter Optimization
,”
Proceedings of the 24th International Conference on Neural Information Processing Systems
,
Granada, Spain
,
Dec. 12–15
,
Red Hook, NY
, pp.
2546
2554
.
You do not currently have access to this content.