Two-dimensional (2D) Unsteady Reynolds-Averaged Navier–Stokes equations (URANS) equations with the Spalart–Allmaras turbulence model are used to simulate the flow and body kinematics of the transverse motion of spring-mounted circular cylinder. The flow is in the high-lift TrSL3 regime of a Reynolds number in the range 35,000 < Re < 130,000. Passive turbulence control (PTC) in the form of selectively distributed surface roughness is used to alter the cylinder flow induced motion (FIM). Simulation is performed using a solver based on the open source Computational Fluid Dynamics (CFD) tool OpenFOAM, which solves continuum mechanics problems with a finite-volume discretization method. Roughness parameters of PTC are chosen based on tests conducted in the Marine Renewable Energy Lab (MRELab) of the University of Michigan. The numerical tool is first tested on smooth cylinder in vortex-induced vibration (VIV) and results are compared with available experimental measurements and URANS simulations. For the cylinder with PTC cases, the sandpaper grit on the cylinder wall is modeled as a rough-wall boundary condition. Two sets of cases with different system parameters (spring, damping) are simulated and the results are compared with experimental data measured in the MRELab. The amplitude ratio curve shows clearly three different branches, including the VIV initial and upper branches, and a galloping branch. The numerical branches are similar to those observed experimentally. Frequency ratio, vortex patterns, transitional behavior, and lift are also predicted well for PTC cylinders at such high Reynolds numbers.

References

1.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.10.1115/1.2957913
2.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2009
, “
Converter of Current, Tide, or Wave Energy
,” U.S. Patent and Trademark Office Patent No. 7,493,759 B2.
3.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Numbers Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
.10.1115/1.2979796
4.
Bernitsas
,
M. M.
,
Raghavan
,
K.
, and
Duchene
,
G.
,
2008
, “
Induced Separation and Vorticity Using Roughness in VIV of Circular Cylinders at 8 × 103 < Re < 2.0 × 105
,”
ASME
27th International OMAE Conference
,
Estoril, Portugal
, June 15–20. 10.1115/OMAE2008-58023)
5.
Raghavan
,
K.
, and
Bernitsas
,
M. M.
,
2011
, “
Experimental Investigation of Reynolds Number Effect on Vortex Induced Vibration of Rigid Cylinder on Elastic Supports
,”
Ocean Eng.
,
38
(
5–6
), pp.
719
731
.10.1016/j.oceaneng.2010.09.003
6.
Chang
,
C. C.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2010
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.10.1016/j.oceaneng.2011.07.013
7.
Chang
,
C. C.
,
2010
, “
Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motion Using Passive Turbulence Control
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
8.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders Vol. 1: Fundamentals
,
Oxford University
,
Oxford, UK
.
9.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1996
, “
Dynamics of a Hydroelastic Cylinder With Very Low Mass and Damping
,”
J. Fluids Struct.
,
10
(
5
), pp.
455
472
.10.1006/jfls.1996.0031
10.
Khalak
,
A.
, and
Wliamson
,
C. H. K.
,
1999
, “
Motions Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
813
851
.10.1006/jfls.1999.0236
11.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2004
, “
Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder With Low Mass-Damping in a Turbulent Flow
,”
J. Fluids Struct.
,
19
(
4
), pp.
449
466
.10.1016/j.jfluidstructs.2004.02.004
12.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aerospatiale
, pp.
5
21
.
13.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2000
, “
Detached-Eddy Simulations Past a Circular Cylinder
,”
Flow, Turbul. Combust.
,
63
(
1–4
), pp.
293
310
.10.1023/A:1009901401183
14.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. Kh.
, and
Travin
,
A. K.
,
1996
, “
Navier–Stokes Simulation of Shedding Turbulent Flow Past a Circular Cylinder and a Cylinder With a Backward Splitter Plate
,”
Third ECCOMAS CFD Conference
,
G. A.
Desideri
,
C.
Hirsch
,
P.
Le Tallec
,
M.
Pandolfi
, and
J.
Periaux
, eds.,
Wiley
,
Chichester, Paris
, Sept. 9–13, pp.
676
682
.
15.
Morgan
,
P. E.
, and
Visbal
,
M. R.
,
2006
, “
Application of Hybrid RANS/ILES to Geometries With Separated Flows
,”
3rd AIAA Flow Control Conference
,
San Francisco
, CA, June 5–7.
16.
Breuer
,
M.
,
2000
, “
A Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
648
654
.10.1016/S0142-727X(00)00056-4
17.
Cantwell
,
B.
, and
Coles
,
D.
,
1983
, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
136
, pp.
321
374
.10.1017/S0022112083002189
18.
Wieselsberger
,
C.
,
1921
, “
New Data on the Law of Hydro and Aerodynamic Resistance
,”
Physikalische Zeitschrift
, (in German).
19.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
,
10
(
3
), pp.
345
356
.10.1017/S0022112061000950
20.
Wanderley
,
J. B. V.
,
Sphaier
,
S. H.
, and
Levi
,
C.
,
2008
, “
A Numerical Investigation of Vortex Induced Vibration on an Elastically Mounted Rigid Cylinder
,”
ASME
27th International Conference
, (OMAE2008), Estoril, Portugal, June 15–20, pp.
703
711
. 10.1115/OMAE2008-57344
21.
Wanderley
,
J. B. V.
,
Sphaier
,
S. H.
, and
Levi
,
C.
,
2009
, “
A Numerical Investigation of the Hysteresis Effect on Vortex Induced Vibration on an Elastically Mounted Rigid Cylinder
,”
ASME
28th International Conference
, (OMAE2009), Honolulu, HI, May 31–June 5, pp.
653
660
. 10.1115/OMAE2009-79725
You do not currently have access to this content.