Abstract

Oceans are harsh environments and can impose significant loads on deployed structures. A wave energy converter (WEC) should be designed to maximize the energy absorbed while ensuring the operating wave condition does not exceed the failure limits of the device itself. Therefore, the loads endured by the support structure are a design constraint for the system. Furthermore, the WEC should be adaptable to different sea states. This work uses a WEC-Sim model of a variable-geometry oscillating wave energy converter (VGOSWEC) mounted on a support structure simulated under different wave scenarios. A VGOSWEC resembles a paddle pitching about a fixed hinge perpendicular to the incoming wave fronts. The geometry of the VGOSWEC is varied by opening a series of controllable flaps on the pitching paddle when the structure experiences threshold loads. It is hypothesized that opening the flaps should result in load shedding at the base of the support structure by reducing the moments about the hinge axis. This work compares the hydrodynamic coefficients, natural periods, and response amplitude operators from completely closed to completely open configurations of the controllable flaps. This work shows that the completely open configuration can reduce the pitch and surge loads on the base of the support structure by as much as 80%. Increased loads at the structure’s natural period can be mitigated by an axial power take-off damping acting as an additional design parameter to control the loads at the WEC’s support structure.

References

1.
Korde
,
U. A.
, and
Ringwood
,
J.
,
2016
,
Hydrodynamic Control of Wave Energy Devices
,
Cambridge University Press
,
Cambridge
.
2.
Todalshaug
,
J. H.
,
Ásgeirsson
,
G. S.
,
Hjálmarsson
,
E.
,
Maillet
,
J.
,
Möller
,
P.
,
Pires
,
P.
,
Guérinel
,
M.
, and
Lopes
,
M.
,
2016
, “
Tank Testing of an Inherently Phase-Controlled Wave Energy Converter
,”
Int. J. Mar. Energy
,
15
, pp.
68
84
.
3.
Salter
,
S.
,
Jeffery
,
D.
, and
Taylor
,
J.
,
1976
, “
The Architecture of Nodding Duck Wave Power Generators
,”
Nav. Archit.
,
21
24
.
4.
Salter
,
S.
,
2016
, “
Wave Energy: Nostalgic Ramblings, Future Hopes and Heretical Suggestions
,”
J. Ocean Eng. Mar. Energy
,
2
(
4
), pp.
399
428
.
5.
Whittaker
,
T.
, and
Folley
,
M.
,
2012
, “
Nearshore Oscillating Wave Surge Converters and the Development of Oyster
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
https://royalsocietypublishing.org/doi/10.1098/rsta.2011.0152
6.
Falcão
,
A. F. O.
,
Cândido
,
J. J.
,
Justino
,
P. A. P.
, and
Henriques
,
J. C. C.
,
2012
, “
Hydrodynamics of the IPS Buoy Wave Energy Converter Including the Effect of Non-Uniform Acceleration Tube Cross Section
,”
Renew. Energy
,
41
, pp.
105
114
.
7.
Parkin
,
P.
,
Payne
,
G.
, and
Taylor
,
J.
,
2003
, “
Numerical Simulation and Tank Tests of the Free Floating Sloped IPS Buoy
,”
Fifth European Wave Energy Conference
,
Cork, Ireland
,
Sept. 17–20
.
8.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
,
Cambridge, MA
.
9.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge
.
10.
Falnes
,
J.
, and
Kurniawan
,
A.
,
2015
, “
Fundamental Formulae for Wave-Energy Conversion
,”
R. Soc. Open Sci.
,
2
(
3
), p.
140305
.
11.
Yu
,
Y.-H.
,
Li
,
Y.
,
Hallett
,
K.
, and
Hotimsky
,
C.
,
2014
, “
Design and Analysis for a Floating Oscillating Surge Wave Energy Converter
,”
Volume 9B: Ocean Renewable Energy
,
American Society of Mechanical Engineers
, Paper No. V09BT09A048.
12.
Li
,
Y.
, and
Yu
,
Y.-H.
,
2012
, “
A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers
,”
Renew. Sustain. Energy Rev.
,
16
(
6
), pp.
4352
4364
.
13.
Le Méhauté
,
B.
,
1976
,
An Introduction to Hydrodynamics and Water Waves
,
Springer-Verlag
,
New York
.
14.
Wei
,
Y.
,
Rafiee
,
A.
,
Henry
,
A.
, and
Dias
,
F.
,
2015
, “
Wave Interaction With an Oscillating Wave Surge Converter, Part I: Viscous Effects
,”
Ocean Eng.
,
104
, pp.
185
203
.
15.
Wei
,
Y.
,
Abadie
,
T.
,
Henry
,
A.
, and
Dias
,
F.
,
2016
, “
Wave Interaction With an Oscillating Wave Surge Converter. Part II: Slamming
,”
Ocean Eng.
,
113
, pp.
319
334
.
16.
Ruehl
,
K.
,
Ogden
,
D.
,
Yu
,
Y.-H.
,
Keester
,
A.
,
Tom
,
N.
,
Forbush
,
D.
, and
Leon
,
J.
,
2021
,
WEC-Sim v4.4
.
17.
Kurniawan
,
A.
, and
Moan
,
T.
,
2012
, “
Characteristics of a Pitching Wave Absorber With Rotatable Flap
,”
Energy Proc.
,
20
, pp.
134
147
.
18.
Renzi
,
E.
, and
Dias
,
F.
,
2013
, “
Hydrodynamics of the Oscillating Wave Surge Converter in the Open Ocean
,”
Eur. J. Mech. B/Fluids
,
41
, pp.
1
10
.
19.
Choiniere
,
M.
,
Tom
,
N.
, and
Thiagarajan
,
K.
,
2019
, “
Load Shedding Characteristics of an Oscillating Surge Wave Energy Converter With Variable Geometry
,”
Ocean Eng.
20.
Henry
,
A.
,
Rafiee
,
A.
,
Schmitt
,
P.
,
Dias
,
F.
, and
Whittaker
,
T.
,
2014
, “
The Characteristics of Wave Impacts on an Oscillating Wave Surge Converter
,”
J. Ocean Wind Energy
,
1
(
2
), pp.
101
110
.
21.
Renzi
,
E.
, and
Dias
,
F.
,
2012
, “
Resonant Behaviour of an Oscillating Wave Energy Converter in a Channel
,”
J. Fluid Mech.
,
701
, pp.
482
510
.
22.
Renzi
,
E.
, and
Dias
,
F.
,
2013
, “
Relations for a Periodic Array of Flap-Type Wave Energy Converters
,”
Appl. Ocean Res.
,
39
, pp.
31
39
.
23.
Renzi
,
E.
,
Doherty
,
K.
,
Henry
,
A.
, and
Dias
,
F.
,
2014
, “
How Does Oyster Work? The Simple Interpretation of Oyster Mathematics
,”
Eur. J. Mech. B/Fluids
,
47
, pp.
124
131
.
24.
Ogden
,
D.
,
Ruehl
,
K.
,
Yu
,
Y.-H.
,
Keester
,
A.
,
Forbush
,
D.
,
Leon
,
J.
, and
Tom
,
N.
,
2021
, “
Review of WEC-Sim Development and Applications
,”
Proceedings of the 14th European Wave and Tidal Energy Conference (EWTEC 2021)
,
Plymouth, UK
,
Sept. 5–9
.
25.
Tom
,
N.
,
Lawson
,
M.
,
Yu
,
Y.-H.
, and
Wright
,
A.
,
2015
, “
Preliminary Analysis of an Oscillating Surge Wave Energy Converter With Controlled Geometry
,” Preprint, p.
12
.
26.
Tom
,
N. M.
,
Lawson
,
M. J.
,
Yu
,
Y. H.
, and
Wright
,
A. D.
,
2016
, “
Development of a Nearshore Oscillating Surge Wave Energy Converter With Variable Geometry
,”
Renew. Energy
,
96
, pp.
410
424
.
27.
Tom
,
N.
,
Lawson
,
M.
,
Yu
,
Y.-H.
, and
Wright
,
A.
,
2016
, “
Spectral Modeling of an Oscillating Surge Wave Energy Converter With Control Surfaces
,”
Appl. Ocean Res.
,
56
, pp.
143
156
.
28.
Tom
,
N. M.
,
Yu
,
Y. H.
,
Wright
,
A. D.
, and
Lawson
,
M. J.
,
2017
, “
Pseudo-Spectral Control of a Novel Oscillating Surge Wave Energy Converter in Regular Waves for Power Optimization Including Load Reduction
,”
Ocean Eng.
,
137
, pp.
352
366
.
29.
Henry
,
A.
,
2009
, “
The Hydrodynamics of Small Seabed Mounted Bottom Hinged Wave Energy Converters in Shallow Water
,” Queen's University Belfast,
OCLC Number/Unique Identifier: 1065025729
.
30.
Kelly
,
M.
,
Tom
,
N.
,
Yu
,
Y.-H.
,
Wright
,
A.
, and
Lawson
,
M.
,
2020
, “
Annual Performance of the Second-Generation Variable-Geometry Oscillating Surge Wave Energy Converter
,”
Renew. Energy.
31.
Burge
,
C.
,
Tom
,
N.
,
Thiagarajan
,
K.
,
Davis
,
J.
, and
Nguyen
,
N.
,
2021
, “
Performance Modeling of a Variable-Geometry Oscillating Surge Wave Energy Converter on a Raised Foundation
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Vol. 85192
,
American Society of Mechanical Engineers
, Paper No. V009T09A010.
32.
US Department of Energy Office of Energy Efficiency & Renewable Energy
, “
Technology Commercialization Fund
.”
33.
Nugyen
,
N.
,
Davis
,
J.
,
Thiagarajan
,
K.
,
Tom
,
N.
, and
Burge
,
C.
,
2021
, “
Optimizing Power Generation of a Bottom-Raised Oscillating Surge Wave Energy Converter Using a Theoretical Model
,” Tech. rep.,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
34.
Cummins
,
W.
,
1962
, “
The Impulse Response Function and Ship Motion
,” Report 1661,
Department of the Navy, David W. Taylor Model Basin, Hydromechanics Laboratory
, Research and Development Report, Oct.
35.
Mei
,
C.
,
1989
,
The Applied Dynamics of Ocean Surface Waves
(
Advanced Series on Ocean Engineering
),
World Scientific
,
Singapore
.
You do not currently have access to this content.