Abstract

The study of the geomechanical behavior of marine clays is a basic requirement for project optimization of the oil and natural gas industry. As part of a large-scale project, this study explored the effects of moisture content, temperature, and rate effects using laboratory vane shear tests. A series of results has helped in the identification of the effects of ground freezing on the undrained shear strength. For temperatures below freezing (−2.0 °C) the undrained shear strength increases with increasing water content and decreases with increasing shear rates for applied angular velocities in the range of 0.0025– 0.015 rpm. Apparently, with the freezing of pore fluids, the shear strength is partially governed by the strength of the ice-soil particle bonds. The increase in shear rate appears to facilitate the breakage of the ice bonds and afterwards the ice crystals reducing the viscous effects on the mobilized shear strength. Conversely, samples tested at temperatures above freezing show an increase in undrained shear strength with the increase in the imposed angular velocity and decreases with increasing soil moisture. Based on these studies, it is concluded that rate effects should be coupled to the influence of temperature and moisture content in the design of offshore structures.

References

1.
IEA—International Energy Agency
,
2019
,
Data and Statistics: Explore Energy Data by Category, Indicator, Country or Region
,
IEA—International Energy Agency
,
Paris, France
.
2.
EXXONMOBIL
,
2019
,
Outlook for Energy: A Perspective to 2040. ExxonMobil’s Outlook for Energy
,
Corporate Headquarters
,
Irving, TX
, pp.
1
58
.
3.
Zakeri
,
A.
,
2009
, “
Review of State-of-the-Art: Drag Forces on Submarine Pipelines and Piles Caused by Landslide or Debris Flow Impact
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
014001
.
4.
Wiesel
,
C. E.
,
1973
, “
Some Factors Influencing In-Situ Vane Tests Results
,”
Proceeding of the 8th International Conference on Soil Mechanics & Foundation Engineering
,
Moscow, Russia
,
November/December, 1973
, vol. 1, pp.
475
479
.
5.
Torstensson
,
B. A.
,
1977
, “
Time-Depend Effects in the Field Vane Test
,”
Proceeding of the International Symposium on Soft Clay
,
Bangkok, Thailand
,
July 5–7
, pp.
387
397
.
6.
Graham
,
J.
,
Crooks
,
J. H. A.
, and
Bell
,
A. L.
,
1983
, “
Time Effects on the Stress-Strain Behavior of Natural Soft Clays
,”
Géotechnique
,
33
(
3
), pp.
327
340
.
7.
Einav
,
I.
, and
Randolph
,
M. F.
,
2005
, “
Combining Upper Bound and Strain Path Methods for Evaluating Penetration Resistance
,”
Int. J. Numer. Methods Eng.
,
63
(
14
), pp.
1991
2016
.
8.
Sridharan
,
A.
,
Rao
,
S. N.
, and
Rao
,
G. V.
,
1971
, “
Shear Strength Characteristics of Saturated Montmorillonite and Kaolinite Clays
,”
Soils Found.
,
11
(
3
), pp.
1
22
.
9.
Hashemi
,
S.
, and
Shiri
,
H.
,
2022
, “
Numerical Modeling of Ice–Seabed Interaction in Clay by Incorporation of the Strain Rate and Strain-Softening Effects
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
4
), p.
042101
.
10.
Luckham
,
P. F.
, and
Rossi
,
S.
,
1999
, “
The Colloidal and Rheological Properties of Bentonite Suspensions
,”
Adv. Colloid Interface Sci.
,
82
(
1–3
), pp.
43
92
.
11.
Roman
,
L. T.
, and
Kotov
,
P. I.
,
2016
, “
Viscosity of Frozen and Thawed Soil
,”
Soil Mech. Found. Eng.
,
Transl. Osnovaniya, Fundamenty i Mekhanika Gruntov
,
53
(
1
), pp.
16
20
.
12.
Winkerkorn
,
H. W.
,
1943
, “
The Condition of Water in Porous Systems
,”
Soil Sci.
,
55
(
2
), pp.
109
115
.
13.
Grim
,
R. E.
,
1968
,
Clay Mineralogy. International Series in the Earth and Planetary Sciences
, 2nd ed..
McGraw-Hill
,
New York
.
14.
Garrido
,
L.
,
Gainza
,
J.
, and
Pereira
,
E.
,
1988
, “
Influence of Sodium Silicate on the Rheological Behavior of Clay Suspensions—Application of the Ternary Bingham Model
,”
Appl. Clay Sci.
,
3
(
4
), pp.
323
335
.
15.
Guven
,
N.
,
1992
, “Molecular Aspects of Clay-Water Interactions,”
Clay Water Interface and its Rheological Properties, CMS Workshop Lectures
,
N.
Guven
, and
R. M.
Pallastro
, eds.,
Clay Minerals Society
,
Chantilly, VA
, pp.
2
79
.
16.
Sridharan
,
A.
,
2001
, “Engineering Behavior of Clays: Influence of Mineralogy,”
Chemo-Mechanical Coupling in Clays: From Nano-Scale to Engineering Applications
,
Swets & Zeitlinger
,
Maratea
.
17.
Yin
,
J. H.
,
2002
, “
Calculation of Settlements of Foundation Soils Considering Creep
,”
Proceedings of the Nakase Memorial Symposium on Soft Ground Engineering in Coastal Areas
,
Yokosuka, Japan
, pp.
205
211
.
18.
Reeves
,
G.
,
Sims
,
I.
, and
Cripps
,
J.
,
2006
,
Clay Materials Used in Construction
,
The Geological Society
,
London, UK
.
19.
Le
,
T. M.
,
Fatahi
,
B.
, and
Khabbaz
,
H.
,
2012
, “
Viscous Behavior of Soft Clay and Inducing Factors
,”
Geotech. Geol. Eng.
,
30
(
5
), pp.
1069
1083
.
20.
Doglioli
,
A. M.
,
2014
,
Notes de Cours de Introduction à L'Océanographie Physique
,
Université D'AixMarseille
,
Marseille, France
, p.
40
.
21.
Emery
,
W. J.
, and
Meincke
,
J.
,
1986
, “
Global Water Masses: Summary and Review
,”
Oceanol. Acta
,
9
(
4
), p.
9
.
22.
ASTM
,
2014
, “
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
,”
ASTM D854
,
West Conshohocken, Philadelphia, PA
.
23.
ASTM
,
2017
, “
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
,”
ASTM D4318
,
West Conshohocken, Philadelphia, PA
.
24.
ASTM
,
2017
, “
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
,”
ASTM D2487
,
West Conshohocken, Philadelphia, PA
.
25.
ASTM
,
2007
, “
Standard Test Method for Particle-Size Analysis of Soils
,”
ASTM D422-63
,
West Conshohocken, Philadelphia, PA
.
26.
ASTM
,
2011
, “
Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
,”
ASTM D2435
,
West Conshohocken, Philadelphia, PA
.
27.
ASTM
,
2012
, “
Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading
,”
ASTM D4186
,
West Conshohocken, Philadelphia, PA
.
28.
ASTM
,
2016
, “
Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil
,”
ASTM D4648
,
West Conshohocken, Philadelphia, PA
.
29.
ASTM
,
2018
, “
Standard Test Method for Field Vane Shear Test in Cohesive Soil
,”
ASTM D2573
,
West Conshohocken, Philadelphia, PA
.
30.
BS—British Standard.
,
1990
, “Methods of Test for Soils for Civil Engineering Purposes—Part 7: Shear Strength Tests (Total Stress)”. BS 1377-7. p.
48
.
31.
Core Team
,
R.
,
2023
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
32.
Murdoch
,
D.
, and
Adler
,
D.
,
2023
, “
Rgl: 3D Visualization Using OpenGL
,”
R Package Version
,
1
(
1
), p.
3
.
33.
Venables
,
W. N.
, and
Ripley
,
B. D.
,
2002
,
Modern Applied Statistics With S
, 4th ed.,
Springer
,
New York
.
34.
Altman
,
N.
, and
Krzywinski
,
M.
,
2016
, “
Regression Diagnostics
,”
Nat. Methods
,
13
(
5
), pp.
385
386
.
35.
Das
,
B. M.
,
2007
,
Fundamentos de Engenharia Geotécnica
,
Publishing Company Thomson Pioneira
,
São Paulo, Brazil
, p.
561
.
36.
Fagundes
,
D. F.
,
2010
, “
Physical Modeling of Offshore Structures Based on the Seabed (in Portuguese)
,”
Masters dissertation
,
Federal University of Rio de Janeiro, COPPE
,
Rio de Janeiro, Brazil
, p.
141
.
37.
PETROBRAS.
,
2011
, Internal Report. 11 p.
38.
Barros
,
J. M. C.
,
Silveira
,
R. M. S.
, et al
,
2009
, “
Geotechnical Properties of Brazilian Marine Clays
,”
Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering
,
Alexandria, Egypt
,
Oct. 5–9
, p.
4
.
39.
Thian
,
S. Y.
, and
Lee
,
C. Y.
,
2014
, “
Geotechnical Characterisation of High Plasticity Offshore Clay
,”
J. Sci. Res. Rep.
,
3
(
21
), pp.
2745
2756
.
40.
Andersen
,
K. H.
,
Jacobus
,
H. P.
,
Brown
,
S. F.
, and
Rosenbrand
,
W. F.
,
1980
, “
Cyclic and Static Laboratory Tests on Drammen Clay
,”
J. Geotech. Eng. Div. ASCE
,
106
(
5
), pp.
499
529
.
41.
Andersen
,
K. H.
, and
Lauritzsen
,
R.
,
1988
, “
Bearing Capacity of Foundations With Cyclic Loads
,”
J. Geotech. Eng. Div. ASCE
,
114
(
5
), pp.
540
555
.
42.
Andersen
,
K. H.
,
Kleven
,
A.
, and
Helen
,
D.
,
1988
, “
Cyclic Soil Data for Design of Gravity Structures
,”
J. Geotech. Eng. Div. ASCE
,
114
(
5
), pp.
517
539
.
43.
Malek
,
A. M.
,
Azzouz
,
A. S.
,
Baligh
,
M. M.
, and
Germaine
,
J. T.
,
1989
, “
Behavior of Foundation Clays Supporting Compliant Offshore Structures
,”
J. Geotech. Eng. Div. ASCE
,
115
(
5
), pp.
615
635
.
44.
Zhu
,
J. G.
, and
Yin
,
J. H.
,
2000
, “
Strain-Rate-Depend Stress-Strain Behavior of Overconsolited Hong Kong Marine Clay
,”
Can. Geotech. J.
,
37
(
6
), pp.
1272
1282
.
45.
Li
,
S. A.
, and
Huang
,
M. S.
,
2010
, “
Undrained Long-Term Cyclic Degradation Characteristics of Offshore Soft Clay
,”
GeoShangai International Conference
,
Shangai, China
,
June 3–5
, pp.
263
271
.
46.
Li
,
L. L.
,
Dan
,
H. B.
, and
Wang
,
L. Z.
,
2011
, “
Undrained Behavior of Natural Marine Clay Under Cyclic Loading
,”
Ocean Eng.
,
38
(
16
), pp.
1792
1805
.
47.
American Association Of State Highway And Transportation Officials (AASHTO)
,
1982
,
Materials—Standard Specification for Transportation Materials and Methods of Sampling and Testing—Part I Specifications,” 3rd ed., Washington, DC
.
48.
Santos
,
V. O.
,
2010
,
Rio Grande Cone: Recent Sedimentary Processes and Their Relationship with the Oil Industry, Undergraduate thesis (in Portuguese) – FURG - Federal University of Rio Grande. Rio Grande, Brazil, 1-59.
.
49.
Flemings
,
P. B.
,
Reece
,
J. S.
,
Ditkof
,
J.
,
Atkins
,
C. C.
, and
Sawyer
,
D.
,
2015
, “
Data Report: Particle Size Analysis of Sediments in the Nankai Trough, IODP EXPEDITION 319 HOLE C009A
,”
Proc. Integr. Ocean Drill. Program
,
319
(
1
), pp.
1
14
.
50.
Rao
,
S. M.
,
Sridharan
,
A.
, and
Chandrakaran
,
S.
,
1988
, “
The Role of Iron Oxide in Tropical Soil Properties
,”
Proceedings of the Second International Conference on Geomechanics in Tropical Soils
,
1
,
Balkema
, pp.
43
48
.
51.
Robinson
,
R. G.
,
Tan
,
T. S.
, and
Lee
,
F. H.
,
2003
, “
A Comparative Study of Suction Induced Seepage Consolidation Versus Centrifuge Consolidation
,”
J. Geotech. Test. J.
,
26
(
1
), pp.
1
9
.
52.
Morris
,
P. H.
,
Lockington
,
D. A.
, and
Apelt
,
C. J.
,
2000
, “
Correlations for Mine Tailings Consolidation Parameters
,”
Int. J. Surf. Min. Reclam. Environ.
,
14
(
2
), pp.
171
182
.
53.
Morris
,
P. H.
,
2003
, “
Compressibility and Permeability Correlations for Fine Grained Dredged Materials
,”
J. Waterw. Port, Coast. Ocean Eng. ASCE
,
129
(
4
), pp.
188
191
.
54.
Sridharan
,
A.
, and
Nagaraj
,
H. B.
,
2000
, “
Compressibility Behavior of Remoulded, Finegrained Soils and Correlation With Index Properties
,”
Canad. Geotech. J.
,
37
(
3
), pp.
712
722
.
55.
Ozaydin
,
K.
,
Yıldırım
,
S.
, and
Yıldırım
,
M.
,
1995
,
Golden Horn Rehabilitation Project – Feasibility Report: Fourth Interim Geotechnical Report. Technical Report (in Turkish), Yildiz Technical University, Istanbul, Türkiye
.
56.
Ipekoglu
,
P.
,
1996
,
Determination of Geotechnical Parameters of Golden Horn Clay. Thesis of Master of Science (in Turkish), Institute of Science, Yildiz Technical University, Istanbul, Türkiye
.
57.
Ipekoglu
,
P.
,
2004
,
“Sludge Disposal Area Rehabilitation,” Ph.D. Thesis (in Turkish), Institute of Science, Yildiz Technical University, Istanbul, Türkiye
.
58.
Arenson
,
L. U.
,
Sprigman
,
S. M.
, and
Sego
,
D. C.
,
2006
, “
The Rheology of Frozen Soils
,”
Appl. Rheol.
,
17
(
1
), pp.
12147
12141
.
59.
Williams
,
P. J.
, and
Smith
,
M. W.
,
1989
, “The Frozen Earth: Fundamentals of Geocryology,”
Cap. 9: The Mechanics of Frozen Ground
,
Cambridge University Press
,
Cambridge, UK
, pp.
237
271
.
You do not currently have access to this content.