Fiber laser-metal active gas (MAG) hybrid welding process was explored to join X80 pipeline steel to improve the efficiency and performance of pipeline welding. During the hybrid welding process, five different positions are applied to simulate the practical pipe girth welding. The weldability is evaluated concerning the bead shape, hardness, tensile, impact properties, and microstructures of welded joints. The results reveal that the tensile strength is higher than that of the base metal and the weld has a good impact ductility and an excellent bend performance. At the same time, the difference in microstructure between the laser zone and arc zone of laser-MAG hybrid welding of X80 pipeline steel is observed. Compared with the arc zone, the laser zone has finer weld grains and a narrower heat affected zone (HAZ). The fusion zone microstructure of the arc zone mainly consists of columnar proeutectoid ferrite (PF) and fine acicular ferrite (AF), whereas that of laser zone comprises acicular ferrite, upper bainite (Bu), and granular bainite (BG), which verifies technical feasibility of hybrid welding in pipeline steel and lays a good foundation for practical application.

References

1.
Glover
,
A.
,
2002
, “
Application of Grade 550 (X80) and Grade 690 (X100) in Arctic Climates
,”
Proceedings, Application and Evaluation of High Grade Linepipes in Hostile Environments
,
Yokohama, Japan
,
Nov
.
7
8
, pp.
33
52
.
2.
Simpson
,
I. D.
,
Tritsiniotis
Z.
, and
Moore
,
L. G.
,
2003
, “
Steel Cleanness Requirements for X65 to X80 Electric Resistance Welded Line Pipe Steels
,”
Ironmaking Steelmaking
,
30
(
2
), pp.
158
164
.10.1179/030192303225001739
3.
Li
,
W. W.
,
Huo
,
C. Y.
,
Ma
,
Q. R.
, and
Feng
,
Y. R.
,
2008
, “
The Development of Large Diameter & Thickness X80 HSAW Linepipe
,”
7th International Pipeline Conference
(IPC2008),
Calgary, AB, Canada
,
Sept
.
29
Oct.
3
, Vol.
3
, pp.
371
375
.
4.
Liang
,
P.
,
Li
,
X. G.
,
Du
,
C. W.
, and
Chen
,
X.
,
2009
, “
Stress Corrosion Cracking of X80 Pipeline Steel in Simulated Alkaline Soil Solution
,”
Mater. Des.
,
30
, pp.
1712
1717
.10.1016/j.matdes.2008.07.012
5.
Komizo
,
Y. I.
,
2008
, “
Overview of Recent Welding Technology Relating to Pipeline Construction
,”
Trans. JWRI
,
37
(
1
), pp.
1
5
.
6.
Yapp
,
D.
, and
Blackman
,
S. A.
,
2004
, “
Recent Developments in High Productivity Pipeline Welding
,”
J. Braz. Soc. Mech. Sci. Eng.
,
26
(
1
), pp.
89
97
.10.1590/S1678-58782004000100015
7.
Cleiton
,
C. S.
, and
Jesualdo
,
P. F.
,
2008
, “
Non-Uniformity of Residual Stress Profiles in Butt Welded Pipes in Manual Arc Welding
,”
J. Mater. Process. Technol.
,
199
(
1–3
), pp.
452
455
.10.1016/j.jmatprotec.2007.08.026
8.
Peng
,
Y.
,
Chen
,
W. Z.
, and
Xu
,
Z. Z.
,
2001
, “
Study of High Toughness Ferrite Wire for Submerged Arc Welding of Pipeline Steel
,”
Mater. Charact.
,
47
, pp.
67
73
.10.1016/S1044-5803(01)00155-3
9.
Murugan
,
N.
, and
Gunaraj
,
V.
,
2005
, “
Prediction and Control of Weld Bead Geometry and Shape Relationships in Submerged Arc Welding of Pipes
,”
J. Mater. Process. Technol.
,
168
, pp.
478
487
.10.1016/j.jmatprotec.2005.03.001
10.
Bae
,
K. Y.
,
Lee
,
T. H.
, and
Ahn
,
K. C.
,
2002
, “
An Optical Sensing System for Seam Tracking and Weld Pool Control in Gas Metal Arc Welding of Steel Pipe
,”
J. Mater. Process. Technol.
,
120
, pp.
458
465
.10.1016/S0924-0136(01)01216-X
11.
Miranda
,
R.
,
Costa
,
A.
,
Quintino
,
L.
,
Yapp
,
D.
, and
Iordachescu
,
D.
,
2009
, “
Characterization of Fiber Laser Welds in X100 Pipeline Steel
,”
Mater. Des.
,
30
, pp.
2701
2707
.10.1016/j.matdes.2008.09.042
12.
Koen
,
F.
,
Alfred
,
D.
,
Patrick
,
D. B.
,
Eric
,
V. D. D.
, and
Wim
,
D. W.
,
2009
, “
Parameter Optimisation for Automatic Pipeline Girth Welding Using a New Friction Welding Method
,”
Mater. Des.
,
30
, pp.
581
589
.10.1016/j.matdes.2008.05.073
13.
Moore
,
P. L.
,
Howse
,
D. S.
, and
Wallach
,
E. R.
,
2004
, “
Microstructures and Properties of Laser/Arc Hybrid Welds and Autogenous Laser Welds in Pipeline Steels
,”
Sci. Technol. Weld. Joining
,
9
(
4
), pp.
314
322
.10.1179/136217104225021652
14.
Fersini
,
M.
,
Demofonti
,
G.
,
Sorrentino
,
S.
, and
Mecozzi
,
E.
,
2009
, “
Circumferential Welding of Gas Pipeline Pipes Using Hybrid Technology With Fibre-Delivered Laser Beam
,”
Weld. Int.
,
23
(
6
), pp.
450
459
.10.1080/09507110802543120
15.
Roepke
,
C.
,
Liu
,
S.
,
Kelly
,
S.
, and
Martukanitz
,
R.
,
2010
, “
Hybrid Laser Arc Welding Process Evaluation on DH36 and EH36 Steel
,”
Weld. J.
,
89
, pp.
140
150
.
16.
Keitel
,
S.
, and
Neubert
,
J.
,
2009
, “
Laser-GMA Hybrid Welding—Applications in Pipeline Construction
,”
welding and cutting
,
8
(
4
), pp.
214
221
.
17.
Jeff
,
D.
,
2007
, “
Practical Applications for Hybrid Laser Welding
,”
Weld. J.
,
86
(
10
), pp.
47
51
.
18.
Ian
,
D. H.
, and
Mark
,
I. N.
,
2008
, “
Hybrid Laser/Gas Metal Arc Welding of High Strength Steel Gas Transmission Pipelines
,”
7th International Pipeline Conference
(IPC2008),
Calgary, AB, Canada
,
Sept.
29
Oct.
3
, pp.
61
66
.
19.
Nate
,
A.
,
Jerry
,
G.
, and
Paul
,
D.
,
2004
, “
Advanced Welding Processes for the Upstream Oil and Gas Industry
,”
Proceedings of the Fourteenth (2004) International Offshore and Polar Engineering Conference
,
Toulon, France
,
May
23–28
, pp.
15
21
.
20.
David
,
S. H.
,
Robert
,
J. S.
, and
Geoff
,
S. B.
,
2005
, “
The Evolution of Yb Fibre Laser/MAG Hybrid Processing for Welding of Pipelines
,”
Proceedings of the 15th International Offshore and Polar Engineering Conference
,
Seoul, Korea
,
June
19–24
, pp.
90
95
.
21.
Edward
,
W. R.
,
Michael
,
J. S.
, and
Darlene
,
A. M.
,
2006
, “
Joining Pipe With the Hybrid Laser-GMAW Process: Weld Test Results and Cost Analysis
,”
Weld. J.
,
6
, pp.
66
71
.
22.
Reutzel
,
E. W.
,
Kelly
,
S. M.
,
Sullivan
,
M. J.
, and
Huang
,
T. D.
,
2008
, “
Hybrid Laser-GMA Welding for Improved Affordability
,”
J. Ship Prod.
, 24(
2
), pp.
72
81
.
23.
Edward
,
W. R.
,
Ludwig
,
K.
,
Michael
,
J. S.
, and
Jay
,
F. T.
,
2007
, “
Laser-GMA Hybrid Pipe Welding System
,” Report No. PSU/ARL-TR-07–007,
246
pp.
24.
Gao
,
M.
,
Zeng
,
X. Y.
,
Yan
,
J.
, and
Hu
,
Q. W.
,
2008
, “
Microstructure Characteristics of Laser-MIG Hybrid Welded Mild Steel
,”
Appl. Surf. Sci.
,
254
, pp.
5715
5721
.10.1016/j.apsusc.2008.03.070
25.
Roepke
,
C.
, and
Liu
,
S.
,
2009
, “
Hybrid Laser Arc Welding of HY-80 Steel
,”
Weld. J.
,
88
, pp.
159
167
.
26.
Sang
,
Y. S.
,
Byoungchul
,
H.
,
Sunghak
,
L.
,
Nack
,
J. K.
, and
Seong
,
S. A.
,
2007
, “
Correlation of Microstructure and Charpy Impact Properties in API X70 and X80 Line-Pipe Steels
,”
Mater. Sci. Eng., A
,
458
, pp.
281
289
.10.1016/j.msea.2006.12.097
27.
Komizo
,
Y. I.
,
Terasaki
,
H.
, and
Yamada
,
T.
,
2008
, “
Morphological Development for Acicular Ferrite in High Strength Pipeline Steel Weld Metal
,”
2008 ASME International Pipeline Conference
(IPC 2008),
Calgary, AB, Canada
,
Sept.
29
Oct.
3
, pp.
483
487
.
You do not currently have access to this content.