Fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and strain-life damage models have been proposed in the literature. The UniGrow model fits this particular class of fatigue crack propagation models. The residual stresses developed at the crack tip play a central role in these models, since they are used to assess the actual crack driving force, taking into account mean stress and loading sequence effects. The performance of the UniGrow model is assessed based on available experimental constant amplitude crack propagation data, derived for the P355NL1 steel. Key issues in fatigue crack growth prediction using the UniGrow model are discussed; in particular, the assessment of the elementary material block size, the elastoplastic analysis used to estimate the residual stress distribution ahead of the crack tip and the adopted strain-life damage relation. The use of finite element analysis to estimate the residual stress field, in lieu of a simplified analysis based on the analytical multi-axial Neuber's approach, and the use of the Morrow's strain-life equation, resulted in fatigue crack propagation rates consistent with the experimental results available for P355NL1 steel, for several stress R-ratios. The use of the Smith–Watson–Topper (SWT) (=σmax.Δɛ/2) damage parameter, which has often been proposed in the literature, over predicts the stress R-ratio effects.

References

1.
Schütz
,
W.
,
1996
, “
A History of Fatigue
,”
Eng. Fract. Mech.
,
54
,
pp.
263
300
.10.1016/0013-7944(95)00178-6
2.
Paris
,
P. C.
,
Gomez
,
M.
, and
Anderson
,
W. E.
,
1961
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
,
13
,
pp.
9
14
.
3.
Beden
,
S. M.
,
Abdullah
,
S.
, and
Ariffin
,
A. K.
,
2009
, “
Review of Fatigue Crack Propagation Models for Metallic Components
,”
Eur. J. Sci. Res.
,
28
,
pp.
364
397
.
4.
Coffin
,
L. F.
,
1954
, “
A Study of the Effects of the Cyclic Thermal Stresses on a Ductile Metal
,”
Transl. ASME
,
76
,
pp.
931
950
.
5.
Manson
,
S. S.
,
1954
, “
Behaviour of Materials Under Conditions of Thermal Stress
,”
National Advisory Committee for Aeronautics, Report No. NACA TN-2933
.
6.
Morrow
,
J. D.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
International Friction, Damping and Cyclic Plasticity
,
ASTM STP 378, pp.
45
87
.10.1520/STP378-EB
7.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
,
1970
, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
,
5
(
4
),
pp.
767
778
.
8.
Shang
,
D.-G.
,
Wang
,
D.-K.
,
Li
,
M.
, and
Yao
,
W.-X.
,
2001
, “
Local Stress–Strain Field Intensity Approach to Fatigue Life Prediction Under Random Cyclic Loading
,”
Int. J. Fatigue
,
23
,
pp.
903
910
.10.1016/S0142-1123(01)00051-2
9.
Glinka
,
G.
,
1985
, “
A Notch Stress-Strain Analysis Approach to Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
21
,
pp.
245
261
.10.1016/0013-7944(85)90014-1
10.
Peeker
,
E.
, and
Niemi
,
E.
,
1999
, “
Fatigue Crack Propagation Model Based on a Local Strain Approach
,”
J. Constr. Steel Res.
49
,
pp.
139
155
.10.1016/S0143-974X(98)00213-2
11.
Noroozi
,
A. H.
,
Glinka
,
G.
, and
Lambert
,
S.
,
2005
, “
A Two Parameter Driving Force for Fatigue Crack Growth Analysis
,”
Int. J. Fatigue
,
27
,
pp.
1277
1296
.10.1016/j.ijfatigue.2005.07.002
12.
Noroozi
,
A. H.
,
Glinka
,
G.
, and
Lambert
,
S.
,
2007
, “
A Study of the Stress Ratio Effects on Fatigue Crack Growth Using the Unified Two-Parameter Fatigue Crack Growth Driving Force
,”
Int. J. Fatigue
,
29
,
pp.
1616
1633
.10.1016/j.ijfatigue.2006.12.008
13.
Noroozi
,
A. H.
,
Glinka
,
G.
, and
Lambert
,
S.
,
2008
, “
Prediction of Fatigue Crack Growth Under Constant Amplitude Loading and a Single Overload Based on Elasto-Plastic Crack Tip Stresses and Strains
,”
Eng. Fract. Mech.
,
75
,
pp.
188
206
.10.1016/j.engfracmech.2007.03.024
14.
Hurley
,
P. J.
, and
Evans
,
W. J.
,
2007
, “
A Methodology for Predicting Fatigue Crack Propagation Rates in Titanium Based on Damage Accumulation
,”
Scr. Mater.
,
56
,
pp.
681
684
.10.1016/j.scriptamat.2006.12.040
15.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatic Bodies With Arbitrary Nonlinear Stress–Strain Law
,”
Trans. ASME J. Appl. Mech.
,
28
,
pp.
544
551
.10.1115/1.3641780
16.
Moftakhar
,
A.
,
Buczynski
,
A.
, and
Glinka
,
G.
,
1995
, “
Calculation of Elasto-Plastic Strains and Stresses in Notches Under Multiaxial Loading
,”
Int. J. Fracture
,
70
,
pp.
357
373
.10.1007/BF00032453
17.
Reinhard
,
W.
,
Moftakhar
,
A.
, and
Glinka
,
G.
,
1997
, “
An Efficient Method for Calculating Multiaxial Elasto-Plastic Notch Tip Strains and Stresses Under Proportional Loading
,”
Fatigue and Fracture Mechanics
,
27
,
ASTM STP 1296
,
R. S.
Piascik
,
J. C.
Newman
,
N. E.
Dowling
, eds.,
American Society for Testing and Materials
,
pp.
613
629
.
18.
Mikheevskiy
,
S.
, and
Glinka
,
G.
,
2009
, “
Elastic–Plastic Fatigue Crack Growth Analysis Under Variable Amplitude Loading Spectra
,”
Int. J. Fatigue
,
31
,
pp.
1828
1836
.10.1016/j.ijfatigue.2009.02.035
19.
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
,
2007
, “
Influence of the Submerged Arc Welding in the Mechanical Behaviour of the P355NL1 Steel—Part II: Analysis of the Low/High Cycle Fatigue Behaviours
,”
J. Mater. Sci.
,
42
,
pp.
5973
5981
.10.1007/s10853-006-1111-7
20.
Creager
,
M.
, and
Paris
,
P. C.
,
1967
, “
Elastic Field Equations for Blunt Cracks With Reference to Stress Corrosion Cracking
,”
Int. J. Fract. Mech.
,
3
,
pp.
247
252
.
21.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
,
pp.
93
100
.10.1016/0025-5416(81)90089-6
22.
Glinka
,
G.
1996
, “
Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors Around Cracks Subjected to Complex Stress Fields
,”
Stress and Fatigue-Fracture Design, Petersburg Ontario
,
Canada
,
Progress Report No. 1
.
23.
Sadananda
,
K.
,
Vasudevan
,
A. K.
, and
Kang
,
I. W.
,
2003
, “
Effect of Superimposed Monotonic Fracture Modes on the ΔK and Kmax Parameters of Fatigue Crack Propagation
,”
Acta Mater.
,
51
(
22
),
pp.
3399
3414
.10.1016/S1359-6454(03)00159-9
24.
Kajawski
,
D.
,
2001
, “
A new (ΔK+Kmax) 0.5 Driving Force Parameter for Crack Growth in Aluminum Alloys
,”
Int. J. Fatigue
,
23
(
8
),
pp.
733
740
.10.1016/S0142-1123(01)00023-8
25.
ASTM
,
1998
, “
ASTM E606: Standard Practice for Strain-Controlled Fatigue Testing
,”
Annual Book of ASTM Standards
,
Vol.
03.01
,
ASTM
,
West Conshohocken, PA
.
26.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of the Stress-Strain Curves by the Three Parameters
,”
National Advisory Committee for Aeronautics
,
Report No. NACA TN-902
.
27.
ASTM
,
2000
, “
ASTM E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
Annual Book of ASTM Standards
,
Vol.
03.01
,
ASTM
,
West Conshohocken, PA
.
28.
De Jesus Abílio
,
M. P.
,
Pereira Hélder
,
F. S. G.
,
Ribeiro Alfredo
,
S.
, and
Fernandes António
,
A.
,
2008
, “
Cyclic Elastoplastic Analysis of Structures Concerning a Fatigue Assessment According to the Local Strain Approach: An Overview
,”
J. Pressure Vessel Technol.
,
130
(
3
), p.
034503
.10.1115/1.2965904
You do not currently have access to this content.