Abstract

Survival signature can be useful for the reliability assessment of critical infrastructures. However, analytical calculation and Monte Carlo Simulation (MCS) are not feasible for approximating the survival signature of large infrastructures, because of the complexity and computational demand due to the large number of components. In this case, efficient and accurate approximations are sought. In this paper we formulate the survival signature approximation problem as a missing data problem. An ensemble of artificial neural networks (ANNs) is trained on a set of survival signatures obtained by MCS. The ensemble of trained ANNs is, then, used to retrieve the missing values of the survival signature. A numerical example is worked out and recommendations are given to design the ensemble of ANNs for large-scale, real-world infrastructures. The electricity grid of Great Britain, the New England power grid (IEEE 39-Bus Case), the reduced Berlin metro system and the approximated American Power System (IEEE 118-Bus Case) are, then, eventually, analyzed as particular case studies.

References

1.
Johansson
,
J.
,
Hassel
,
H.
, and
Zio
,
E.
,
2013
, “
Reliability and Vulnerability Analyses of Critical Infrastructures: Comparing Two Approaches in the Context of Power Systems
,”
Reliab. Eng. Syst. Saf.
,
120
, pp.
27
38
.10.1016/j.ress.2013.02.027
2.
Rinaldi
,
S. M.
,
Peerenboom
,
J. P.
, and
Kelly
,
T. K.
,
2001
, “
Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies
,”
IEEE Control Syst. Mag.
,
21
(
6
), pp.
11
25
.10.1109/37.969131
3.
Zuev
,
K. M.
, and
Beer
,
M.
,
2017
, “
Special Issue on Complex Engineered Networks: Reliability, Risk, and Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
2
), p. 020201.10.1115/1.4036240
4.
Piacenza
,
J. R.
,
Proper
,
S.
,
Bozorgirad
,
M. A.
,
Hoyle
,
C.
, and
Tumer
,
I. Y.
,
2017
, “
Robust Topology Design of Complex Infrastructure Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
2
), p. 021006.10.1115/1.4036152
5.
Eusgeld
,
I.
,
Nan
,
C.
, and
Dietz
,
S.
,
2011
, “
System-of-Systems Approach for Interdependent Critical Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
96
(
6
), pp.
679
686
.10.1016/j.ress.2010.12.010
6.
F. P. A.
Coolen
, and
T.
Coolen-Maturi
,
2012
, “
Generalizing the Signature to Systems With Multiple Types of Components
,”
Complex Systems and Dependability, Advances in Intelligent and Soft Computing
, Vol.
170
,
Springer
,
Berlin, Heidelberg
, pp.
115
130
.10.1007/978-3-642-30662-4-8
7.
Zhuang
,
X.
,
Yu
,
T.
,
Shen
,
L.
, and
Guo
,
B.
,
2018
, “
Dynamic Reliability Evaluation of Nonrepairable Multistate Weighted k-Out-of-n System With Dependent Components Based on Copula
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
4
(
4
) p.
041001
.10.1115/1.4039243
8.
Liu
,
X.
,
Fang
,
Y.-P.
,
Ferrario
,
E.
, and
Zio
,
E.
,
2021
, “
Resilience Assessment and Importance Measure for Interdependent Critical Infrastructures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
3
), p.
031006
.10.1115/1.4051196
9.
Coolen
,
F. P.
, and
Coolen-Maturi
,
T.
,
2015
, “
Modelling Uncertain Aspects of System Dependability With Survival Signatures
,”
Dependability Problems of Complex Information Systems, Advances in Intelligent Systems and Computing
, Vol.,
307
,
Springer
, Cham, pp.
19
34
.10.1007/978-3-319-08964-5_2
10.
Feng
,
G.
,
Patelli
,
E.
,
Beer
,
M.
, and
Coolen
,
F. P. A.
,
2016
, “
Imprecise System Reliability and Component Importance Based on Survival Signature
,”
Reliab. Eng. Syst. Saf.
,
150
, pp.
116
125
.10.1016/j.ress.2016.01.019
11.
Aslett
,
L. J. M.
,
Coolen
,
F. P. A.
, and
Wilson
,
S. P.
,
2015
, “
Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature
,”
Risk Anal.
,
35
(
9
), pp.
1640
1651
.10.1111/risa.12228
12.
Di Maio
,
F.
,
Pettorossi
,
C.
, and
Zio
,
E.
,
2023
, “
Entropy-Driven Monte Carlo Simulation Method for Approximating the Survival Signature of Complex Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
108982
.10.1016/j.ress.2022.108982
13.
Scherb
,
A.
,
Garre
,
L.
, and
Straub
,
D.
,
2017
, “
Reliability and Component Importance in Networks Subject to Spatially Distributed Hazards Followed by Cascading Failures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
2
), p.
021007
.10.1115/1.4036091
14.
Behrensdorf
,
J.
,
Broggi
,
M.
, and
Beer
,
M.
,
2019
, “
Reliability Analysis of Networks Interconnected With Copulas
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
4
), p.
041006
.10.1115/1.4044043
15.
Liu
,
X.
,
Ferrario
,
E.
, and
Zio
,
E.
,
2017
, “
Resilience Analysis Framework for Interconnected Critical Infrastructures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
2
), p.
021001
.10.1115/1.4035728
16.
Miro
,
S.
,
Willeke
,
T.
,
Broggi
,
M.
,
Seume
,
J. R.
, and
Beer
,
M.
,
2019
, “
Reliability Analysis of an Axial Compressor Based on One-Dimensional Flow Modeling and Survival Signature
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
3
), p.
031003
.10.1115/1.4043150
17.
Reed
,
S.
,
2017
, “
An Efficient Algorithm for Exact Computation of System and Survival Signatures Using Binary Decision Diagrams
,”
Reliab. Eng. Syst. Saf.
,
165
, pp.
257
267
.10.1016/j.ress.2017.03.036
18.
Behrensdorf
,
J.
,
Regenhardt
,
T.-E.
,
Broggi
,
M.
, and
Beer
,
M.
,
2021
, “
Numerically Efficient Computation of the Survival Signature for the Reliability Analysis of Large Networks
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107935
.10.1016/j.ress.2021.107935
19.
Li
,
D.
,
Zhang
,
Q.
,
Zio
,
E.
,
Havlin
,
S.
, and
Kang
,
R.
,
2015
, “
Network Reliability Analysis Based on Percolation Theory
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
556
562
.10.1016/j.ress.2015.05.021
20.
Behrensdorf
,
J.
,
Brandt
,
S.
,
Broggi
,
M.
, and
Beer
,
M.
,
2018
, “
Efficient Approximation of the Survival Signature for Large Networks
,”
Proceedings of the 6th International Symposium on Reliability Engineering and Risk Management
, Singapore, May 31–June 1.10.3850/978-981-11-2726-7_CRR14
21.
Hansen
,
L. K.
, and
Salamon
,
P.
,
1990
, “
Neural Network Ensembles
,”
IEEE Trans Pattern Anal Mach Intell
,
12
(
10
), pp.
993
1001
.10.1109/34.58871
22.
Compare
,
M.
,
di Maio
,
F.
,
Zio
,
E.
,
Carlevaro
,
F.
, and
Mattafirri
,
S.
,
2016
, “
Improving Scheduled Maintenance by Missing Data Reconstruction: A Double-Loop Monte Carlo Approach
,”
Proc. Inst. Mech. Eng. O: J. Risk Reliab.
,
230
(
5
), pp.
502
511
.10.1177/1748006X16651988
23.
Al-Dahidi
,
S.
,
Baraldi
,
P.
,
Zio
,
E.
, and
Lorenzo
,
M.
,
2021
, “
Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production
,”
Sustainability (Switzerland)
,
13
(
11
), p.
6417
.10.3390/su13116417
24.
Baraldi
,
P.
,
Mangili
,
F.
, and
Zio
,
E.
,
2012
, “
Ensemble of Bootstrapped Models for the Prediction of the Remaining Useful Life of a Creeping Turbine Blade
,”
IEEE International Conference on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHM Technology and Application, Conference Program
, Denver, CO, June 18–19.10.1109/ICPHM.2012.6299506
25.
Bukhsh
,
W. A.
, and
McKinnon
,
K.
,
2013
, “
Network Data of Real Transmission Networks
,” accessed Sept. 21, 2023, https://www.maths.ed.ac.uk/optenergy/NetworkData/index.html
26.
Athay
,
T.
,
Podmore
,
R.
, and
Virmani
,
S.
,
1979
, “
A Practical Method for the Direct Analysis of Transient Stability
,”
IEEE Trans. Power Appar. Syst.
,
PAS-98
(
2
), pp.
573
584
.10.1109/TPAS.1979.319407
27.
Illinois Institute of Technology, “
Index of Data Illinois Institute of Technology
,” accessed Sept. 21, 2023, http://motor.ece.iit.edu/data/
28.
Wilkov
,
R. S.
,
1972
, “
Analysis and Design of Reliable Computer Networks
,”
IEEE Trans. Commun.
,
20
(
3
), pp.
660
678
.10.1109/TCOM.1972.1091214
29.
Molloy
,
M.
, and
Reed
,
B.
,
1995
, “
A Critical Point for Random Graphs With a Given Degree Sequence
,”
Random Struct. Amp. Algorithms
,
6
(
2–3
), pp.
161
180
.10.1002/rsa.3240060204
30.
Zio
,
E.
,
2007
, “
From Complexity Science to Reliability Efficiency: A New Way of Looking at Complex Network Systems and Critical Infrastructures
,”
Int. J. Crit. Infrastruct.
,
3
(
3/4
), pp.
488
508
.10.1504/IJCIS.2007.014122
31.
Floyd
,
R. W.
,
1962
, “
Algorithm 97: Shortest Path
,”
Commun. ACM
,
5
(
6
), p.
345
.10.1145/367766.368168
32.
Zio
,
E.
,
2006
, “
A Study of the Bootstrap Method for Estimating the Accuracy of Artificial Neural Networks in Predicting Nuclear Transient Processes
,”
IEEE Trans. Nucl. Sci.
,
53
(
3
), pp.
1460
1478
.10.1109/TNS.2006.871662
You do not currently have access to this content.