Abstract

Due to the nature of additive manufacturing (AM), design and manufacturing are deeply coupled. Toolpaths are defined based on the part geometry, and in turn, these toolpaths can influence the bonding between adjacent toolpaths, especially for fused filament fabrication (FFF) process. In FFF, bonding between adjacent rasters is critical to the FFF part mechanical strength. The bonding is driven by factors such as thermal history and a deposition strategy, which are dictated by the geometry of a part and process parameters. In this research, a data-driven physics-based methodology is proposed to predict the mechanical properties of FFF parts using Bayesian inference. In the proposed methodology, geometry and variance in process parameters are used to quantify uncertainties in the mechanical properties. Empirical data derived from the mesostructure of specimens are utilized to generate priors of predictors. Hamilton Monte Carlo is then used to sample the posterior distribution. Subsequently, random draw from posterior predictive distribution is performed, and the results are validated against empirical data to establish the accuracy of the proposed methodology. The proposed methodology can provide more accurate prediction of the mechanical properties by considering the influence of geometry, process parameters and uncertainty in AM process.

References

1.
International Organization for Standardization
,
2012
, “
ISO/ASTM 52900: 2015 Additive manufacturing-General Principles-Terminology
,” ASTMF2792-10e1.
2.
Chua
,
C. K.
, and
Leong
,
K. F.
,
2017
,
3D Printing and Additive Manufacturing: Principles and Applications: The Fifth Edition of Rapid Prototyping: Principles and Applications
,
World Scientific
,
Singapore
.
3.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.10.1115/1.4034103
4.
Papon
,
E. A.
,
Haque
,
A.
, and
Mulani
,
S. B.
,
2019
, “
Process Optimization and Stochastic Modeling of Void Contents and Mechanical Properties in Additively Manufactured Composites
,”
Compos. Part B: Eng.
,
177
, p.
107325
.10.1016/j.compositesb.2019.107325
5.
Zhang
,
Y.
, and
Moon
,
S. K.
,
2021
, “
Data-Driven Design Strategy in Fused Filament Fabrication: Status and Opportunities
,”
J. Comput. Des. Eng.
,
8
(
2
), pp.
489
509
.10.1093/jcde/qwaa094
6.
Zhang
,
Y.
,
Choi
,
J. P.
, and
Moon
,
S. K.
,
2021
, “
Effect of Geometry on the Mechanical Response of Additively Manufactured Polymer.
,”
Polym. Test.
,
100
, p.
107245
.10.1016/j.polymertesting.2021.107245
7.
Torrado
,
A. R.
, and
Roberson
,
D. A.
,
2016
, “
Failure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster Patterns
,”
J. Failure Anal. Prev.
,
16
(
1
), pp.
154
164
.10.1007/s11668-016-0067-4
8.
Coogan
,
T. J.
, and
Kazmer
,
D. O.
,
2017
, “
Healing Simulation for Bond Strength Prediction of FDM
,”
Rapid Prototyping J.
,
23
(
3
), pp.
551
561
.10.1108/RPJ-03-2016-0051
9.
Shelton
,
T. E.
,
Willburn
,
Z. A.
,
Hartsfield
,
C. R.
,
Cobb
,
G. R.
,
Cerri
,
J. T.
, and
Kemnitz
,
R. A.
,
2020
, “
Effects of Thermal Process Parameters on Mechanical Interlayer Strength for Additively Manufactured ULTEM 9085
,”
Polym. Test.
,
81
, p.
106255
.10.1016/j.polymertesting.2019.106255
10.
Allum
,
J.
,
Moetazedian
,
A.
,
Gleadall
,
A.
, and
Silberschmidt
,
V. V.
,
2020
, “
Interlayer Bonding Has Bulk-Material Strength in Extrusion Additive Manufacturing: New Understanding of Anisotropy
,”
Addit. Manuf.
,
34
, p.
101297
.10.1016/j.addma.2020.101297
11.
Wang
,
J.
,
Xie
,
H.
,
Weng
,
Z.
,
Senthil
,
T.
, and
Wu
,
L.
,
2016
, “
A Novel Approach to Improve Mechanical Properties of Parts Fabricated by Fused Deposition Modeling
,”
Mater. Des.
,
105
, pp.
152
159
.10.1016/j.matdes.2016.05.078
12.
Abbott
,
A. C.
,
Tandon
,
G. P.
,
Bradford
,
R. L.
,
Koerner
,
H.
, and
Baur
,
J. W.
,
2018
, “
Process-Structure-Property Effects on ABS Bond Strength in Fused Filament Fabrication.
,”
Addit. Manuf.
,
19
, pp.
29
38
.10.1016/j.addma.2017.11.002
13.
Li
,
L.
,
Sun
,
Q.
,
Bellehumeur
,
C.
, and
Gu
,
P.
,
2002
, “
Composite Modeling and Analysis for Fabrication of FDM Prototypes With Locally Controlled Properties
,”
J. Manuf. Processes
,
4
(
2
), pp.
129
141
.10.1016/S1526-6125(02)70139-4
14.
Rodrı’ Guez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2003
, “
Design of Fused-Deposition ABS Components for Stiffness and Strength
,”
ASME J. Mech. Des
,
125
(
3
), pp.
545
551
.10.1115/1.1582499
15.
Hill
,
N.
, and
Haghi
,
M.
,
2014
, “
Deposition Direction-Dependent Failure Criteria for Fused Deposition Modeling Polycarbonate
,”
Rapid Prototyping J.
,
20
(
3
), pp.
221
227
.10.1108/RPJ-04-2013-0039
16.
Nath
,
P.
,
Olson
,
J. D.
,
Mahadevan
,
S.
, and
Lee
,
Y.-T. T.
,
2020
, “
Optimization of Fused Filament Fabrication Process Parameters Under Uncertainty to Maximize Part Geometry Accuracy.
,”
Addit. Manuf.
,
35
, p.
101331
.10.1016/j.addma.2020.101331
17.
Liu
,
Y.
, and
Wang
,
P.
,
2016
, “
Probabilistic Modeling and Analysis of Fused Deposition Modeling Process Using Surrogate Models
,”
ASME
Paper No. DETC2016-59603.10.1115/DETC2016-59603
18.
Bartolai
,
J.
,
Simpson
,
T. W.
, and
Xie
,
R.
,
2018
, “
Predicting Strength of Additively Manufactured Thermoplastic Polymer Parts Produced Using Material Extrusion
,”
Rapid Prototyping J.
,
24
(
2
), pp.
321
332
.10.1108/RPJ-02-2017-0026
19.
Hopper
,
R. W.
,
1993
, “
Coalescence of Two Viscous Cylinders by Capillarity: Part I, Theory
,”
J. Am. Ceramic Soc.
,
76
(
12
), pp.
2947
2952
.10.1111/j.1151-2916.1993.tb06594.x
20.
Hopper
,
R. W.
,
1993
, “
Coalescence of Two Viscous Cylinders by Capillarity: Part II, Shape Evolution
,”
J. Am. Ceram. Soc.
,
76
(
12
), pp.
2953
2960
.10.1111/j.1151-2916.1993.tb06595.x
21.
Sun
,
Q.
,
Rizvi
,
G. M.
,
Bellehumeur
,
C. T.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyping J.
,
14
(
2
), pp.
72
80
.10.1108/13552540810862028
22.
Haghighi
,
A.
, and
Li
,
L.
,
2020
, “
A Hybrid Physics-Based and Data-Driven Approach for Characterizing Porosity Variation and Filament Bonding in Extrusion-Based Additive Manufacturing.
,”
Addit. Manuf.
,
36
, p.
101399
.10.1016/j.addma.2020.101399
23.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J.
,
2017
, “
Estimation of Filament Temperature and Adhesion Development in Fused Deposition Techniques
,”
J. Mater. Process. Technol.
,
245
, pp.
167
179
.10.1016/j.jmatprotec.2017.02.026
24.
Luchinsky
,
D. G.
,
Hafiychuk
,
H.
,
Hafiychuk
,
V.
, and
Wheeler
,
K. R.
,
2018
, “
Molecular Dynamics of ULTEM 9085 for 3D Manufacturing: Spectra, Thermodynamic Properties, and Shear Viscosity”
,
National Aeronautics and Space Adminstration
,
Washington, DC
.
25.
Tandon
,
G. P.
,
Whitney
,
T. J.
,
Gerzeski
,
R.
,
Koerner
,
H.
, and
Baur
,
J.
,
2017
, “
Process Parameter Effects on Interlaminar Fracture Toughness of FDM Printed Coupons,” (Mechanics of Composite and Multi-Functional Materials
, Vol.
7)
,
Springer
,
Berlin
, pp.
63
71
.
26.
Gelman
,
A.
, and
Hill
,
J.
,
2006
,
Data Analysis Using Regression and Multilevel/Hierarchical Models
,
Cambridge University Press
,
Cambridge, UK
.
27.
Gelman
,
A
, et al.,
2013
,
Bayesian Data Analysis
,
CRC Press
,
Boca Ration, FL
.
28.
Zhang
,
Y.
, and
Moon
,
S. K.
,
2021
, “
The Effect of Annealing on Additive Manufactured ULTEM™ 9085 Mechanical Properties
,”
Materials
,
14
(
11
), p.
2907
.10.3390/ma14112907
29.
Croccolo
,
D.
,
De Agostinis
,
M.
, and
Olmi
,
G.
,
2013
, “
Experimental Characterization and Analytical Modeling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30.
,”
Comput. Mater. Sci.
,
79
, pp.
506
518
.10.1016/j.commatsci.2013.06.041
30.
Padovano
,
E.
,
Galfione
,
M.
,
Concialdi
,
P.
,
Lucco
,
G.
, and
Badini
,
C.
,
2020
, “
Mechanical and Thermal Behavior of Ultem® 9085 Fabricated by Fused-Deposition Modeling.
,”
Appl. Sci.
,
10
(
9
), p.
3170
.10.3390/app10093170
31.
Garzon-Hernandez
,
S.
,
Garcia-Gonzalez
,
D.
,
Jérusalem
,
A.
, and
Arias
,
A.
,
2020
, “
Design of FDM 3D Printed Polymers: An Experimental-Modeling Methodology for the Prediction of Mechanical Properties
,”
Mater. Des.
,
188
, p.
108414
.10.1016/j.matdes.2019.108414
32.
Hoffman
,
M. D.
, and
Gelman
,
A.
,
2014
, “
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res
,
15
(
1
), pp.
1593
1623
.http://jmlr.org/papers/v15/hoffman14a.html
33.
Chong
,
A.
, and
Menberg
,
K.
,
2018
, “
Guidelines for the Bayesian Calibration of Building Energy Models.
,”
Energy Build.
,
174
, pp.
527
547
.10.1016/j.enbuild.2018.06.028
34.
Gelman
,
A.
,
Simpson
,
D.
, and
Betancourt
,
M.
,
2017
, “
The Prior Can Often Only Be Understood in the Context of the Likelihood.
,”
Entropy
,
19
(
10
), p.
555
.10.3390/e19100555
35.
Betancourt
,
M.
,
2017
, “
A Conceptual Introduction to Hamiltonian Monte Carlo
,” preprint arXiv:1701.02434.
36.
SABIC
,
2021
, “
ULTEM™ RESINS. ULTEM™ RESIN
,” accessed Mar. 25, 2021, https://www.sabic.com/en/products/specialties/ultem-resins/ultem-resin
You do not currently have access to this content.