Abstract

The transition to Industry 5.0 begins with the integration of the human aspect into Industry 4.0 technologies. Industry 5.0 is a human-centric design approach that aims to overcome the issues raised by Industry 4.0 and involves collaborating both with humans and robots in a shared working environment. The new idea demonstrates a great connection between technology and people, or “soft” sectors. At this point, the idea of a digital twin (DT), a novel technological innovation, appears. The digital twin is a newly developed technology that is essential for digital transformation and intelligent updates. The fundamental basis of this concept involves the amalgamation of artificial intelligence (AI) with the notion of digital twins, which refer to virtual renditions of tangible entities, systems, or procedures. Therefore, this article focuses on digital twins and the innovative concept of human digital twins (HDTs), with particular emphasis on the technological tools of AI in the usage of mentioned technology. Also, this article conducts a comprehensive political (P), economic (E), social (S), technological (T), legal (L), and environmental (E) (PESTLE) analysis of Industry 5.0, while specifically delving into the concepts of digital twin and human digital twin.

References

1.
Lu
,
Y.
,
Liu
,
C.
,
Wang
,
K. I.-K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Rob. Comput.-Integr. Manuf.
,
61
, p.
101837
.10.1016/j.rcim.2019.101837
2.
Jiang
,
Z.
,
Guo
,
Y.
, and
Wang
,
Z.
,
2021
, “
Digital Twin to Improve the Virtual-Real Integration of Industrial IoT
,”
J. Ind. Inf. Integr.
,
22
, p.
100196
.10.1016/j.jii.2020.100196
3.
Miskinis
,
C.
,
2019
, “
The Dangers of Digital Twins and What Threats It Can Impose
,”
Challenge Advisory
,
London, UK
, accessed Nov. 22, 2022, https://www.challenge.org/insights/digital-twin-risks/
4.
Kuruppuarachchi
,
P. M.
,
Rea
,
S.
, and
McGibney
,
A.
,
2023
, “
Trusted and Secure Composite Digital Twin Architecture for Collaborative Ecosystems
,”
IET Collab. Intell. Manuf.
,
5
(
1
), p.
e12070
.10.1049/cim2.12070
5.
Lampropoulos
,
G.
, and
Siakas
,
K.
,
2023
, “
Enhancing and Securing Cyber‐Physical Systems and Industry 4.0 Through Digital Twins: A Critical Review
,”
J. Software Evol. Process
,
35
(
7
), p.
e2494
.10.1002/smr.2494
6.
Area
,
I.
,
Fernández
,
F. J.
,
Nieto
,
J. J.
, and
Tojo
,
F. A. F.
,
2022
, “
Concept and Solution of Digital Twin Based on a Stieltjes Differential Equation
,”
Math. Methods Appl. Sci.
,
45
(
12
), pp.
7451
7465
.10.1002/mma.8252
7.
Kenett
,
R. S.
, and
Bortman
,
J.
,
2022
, “
The Digital Twin in Industry 4.0: A Wide‐Angle Perspective
,”
Qual. Reliab. Eng.
,
38
(
3
), pp.
1357
1366
.10.1002/qre.2948
8.
Bickford
,
J.
,
Van Bossuyt
,
D. L.
,
Beery
,
P.
, and
Pollman
,
A.
,
2020
, “
Operationalizing Digital Twins Through Model‐Based Systems Engineering Methods
,”
Syst. Eng.
,
23
(
6
), pp.
724
750
.10.1002/sys.21559
9.
Ubina
,
N. A.
,
Lan
,
H.-Y.
,
Cheng
,
S.-C.
,
Chang
,
C.-C.
,
Lin
,
S.-S.
,
Zhang
,
K.-X.
,
Lu
,
H.-Y.
,
Cheng
,
C.-Y.
, and
Hsieh
,
Y.-Z.
,
2023
, “
Digital Twin-Based Intelligent Fish Farming With Artificial Intelligence Internet of Things (AIoT)
,”
Smart Agric. Technol.
,
5
, p.
100285
.10.1016/j.atech.2023.100285
10.
Zhang
,
Z.
,
Wen
,
F.
,
Sun
,
Z.
,
Guo
,
X.
,
He
,
T.
, and
Lee
,
C.
,
2022
, “
Artificial Intelligence‐Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin
,”
Adv. Intell. Syst.
,
4
(
7
), p.
2100228
.10.1002/aisy.202100228
11.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
S.
,
2022
, “
Advanced Electronics and Artificial Intelligence: Must‐Have Technologies Toward Human Body Digital Twins
,”
Adv. Intell. Syst.
,
4
(
7
), p.
2100263
.10.1002/aisy.202100263
12.
Li
,
D.
,
Landström
,
A.
,
Fast-Berglund
,
Å.
, and
Almström
,
P.
,
2019
, “
Human-Centred Dissemination of Data, Information and Knowledge in Industry 4.0
,”
Procedia CIRP
,
84
, pp.
380
386
.10.1016/j.procir.2019.04.261
13.
Moingeon
,
P.
,
Chenel
,
M.
,
Rousseau
,
C.
,
Voisin
,
E.
, and
Guedj
,
M.
,
2023
, “
Virtual Patients, Digital Twins and Causal Disease Models: Paving the Ground for In Silico Clinical Trials
,”
Drug Discovery Today
,
28
(
7
), p.
103605
.10.1016/j.drudis.2023.103605
14.
Ozmen
,
Garibay
,
O.
,
Winslow
,
B.
,
Andolina
,
S.
,
Antona
,
M.
,
Bodenschatz
,
A.
,
Coursaris
,
C.
,
Falco
,
G.
, et al.,
2023
, “
Six Human-Centered Artificial Intelligence Grand Challenges
,”
Int. J. Hum.–Comput. Interact.
,
39
(
3
), pp.
391
437
.10.1080/10447318.2022.2153320
15.
Lukač
,
L.
,
Fister
,
I.
, and
Fister
,
I.
,
2022
, “
Digital Twin in Sport: From an Idea to Realization
,”
Appl. Sci.
,
12
(
24
), p.
12741
.10.3390/app122412741
16.
Pigni
,
F.
,
Watson
,
R. T.
, and
Piccoli
,
G.
,
2021
, “
Digital Twins: Representing the Future
,”
SSRN J.
10.2139/ssrn.3855535
17.
Furini
,
M.
,
Gaggi
,
O.
,
Mirri
,
S.
,
Montangero
,
M.
,
Pelle
,
E.
,
Poggi
,
F.
, and
Prandi
,
C.
,
2022
, “
Digital Twins and Artificial Intelligence: As Pillars of Personalized Learning Models
,”
Commun. ACM
,
65
(
4
), pp.
98
104
.10.1145/3478281
18.
Baillargeon
,
B.
,
Rebelo
,
N.
,
Fox
,
D. D.
,
Taylor
,
R. L.
, and
Kuhl
,
E.
,
2014
, “
The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function
,”
Eur. J. Mech. - A/Solids
,
48
, pp.
38
47
.10.1016/j.euromechsol.2014.04.001
19.
Steele
,
A. J.
,
Denaxas
,
S. C.
,
Shah
,
A. D.
,
Hemingway
,
H.
, and
Luscombe
,
N. M.
,
2018
, “
Machine Learning Models in Electronic Health Records Can Outperform Conventional Survival Models for Predicting Patient Mortality in Coronary Artery Disease
,”
PLoS ONE
,
13
(
8
), p.
e0202344
.10.1371/journal.pone.0202344
20.
Esnault
,
C.
,
Gadonna
,
M.-L.
,
Queyrel
,
M.
,
Templier
,
A.
, and
Zucker
,
J.-D.
,
2020
, “
Q-Finder: An Algorithm for Credible Subgroup Discovery in Clinical Data Analysis—An Application to the International Diabetes Management Practice Study
,”
Front. Artif. Intell.
,
3
, p.
559927
.10.3389/frai.2020.559927
21.
Kaul
,
R.
,
Ossai
,
C.
,
Forkan
,
A. R. M.
,
Jayaraman
,
P. P.
,
Zelcer
,
J.
,
Vaughan
,
S.
, and
Wickramasinghe
,
N.
,
2023
, “
The Role of AI for Developing Digital Twins in Healthcare: The Case of Cancer Care
,”
WIREs Data Min. Knowl.
,
13
(
1
), p.
e1480
.10.1002/widm.1480
22.
Tao
,
F.
,
Qi
,
Q.
,
Wang
,
L.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twins and Cyber–Physical Systems Toward Smart Manufacturing and Industry 4.0: Correlation and Comparison
,”
Engineering
,
5
(
4
), pp.
653
661
.10.1016/j.eng.2019.01.014
23.
Fu
,
Y.
,
Zhu
,
G.
,
Zhu
,
M.
, and
Xuan
,
F.
,
2022
, “
Digital Twin for Integration of Design-Manufacturing-Maintenance: An Overview
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
80
.10.1186/s10033-022-00760-x
24.
Lattanzi
,
L.
,
Raffaeli
,
R.
,
Peruzzini
,
M.
, and
Pellicciari
,
M.
,
2021
, “
Digital Twin for Smart Manufacturing: A Review of Concepts Towards a Practical Industrial Implementation
,”
Int. J. Comput. Integr. Manuf.
,
34
(
6
), pp.
567
597
.10.1080/0951192X.2021.1911003
25.
Slansky
,
D.
,
2021
, “
How the Digital Twin Drives Smart Manufacturing
,”
Automation World
,
Nashville, TN
, accessed Nov. 22, 2022, https://www.automationworld.com/factory/iiot/article/21259456/how-the-digital-twin-drives-smart-manufacturing
26.
Coşgun
,
A. E.
,
2023
, “
Digital Twin and Human Digital Twin for Practical Implementation in Industry 5.0
,”
Global Perspectives on Robotics and Autonomous Systems: Development and Applications
,
IGI Global
,
Beijing, China
.
27.
Tao
,
F.
,
Zhang
,
M.
, and
Nee
,
A. Y. C.
,
2019
, “
Five-Dimension Digital Twin Modeling and Its Key Technologies
,”
Digital Twin Driven Smart Manufacturing
,
Elsevier
, New York, pp.
63
81
.
28.
Shengli
,
W.
,
2021
, “
Is Human Digital Twin Possible?
,”
Comput. Methods Programs Biomed. Update
,
1
, p.
100014
.10.1016/j.cmpbup.2021.100014
29.
Bhalla
,
N.
,
Jolly
,
P.
,
Formisano
,
N.
, and
Estrela
,
P.
,
2016
, “
Introduction to Biosensors
,”
Essays Biochem.
,
60
(
1
), pp.
1
8
.10.1042/EBC20150001
30.
Lu
,
Y.
,
Adrados
,
J. S.
,
Chand
,
S. S.
, and
Wang
,
L.
,
2021
, “
Humans Are Not Machines—Anthropocentric Human–Machine Symbiosis for Ultra-Flexible Smart Manufacturing
,”
Engineering
,
7
(
6
), pp.
734
737
.10.1016/j.eng.2020.09.018
31.
Papetti
,
A.
,
Gregori
,
F.
,
Pandolfi
,
M.
,
Peruzzini
,
M.
, and
Germani
,
M.
,
2020
, “
A Method to Improve Workers' Well-Being Toward Human-Centered Connected Factories
,”
J. Comput. Des. Eng.
,
7
(
5
), pp.
630
643
.10.1093/jcde/qwaa047
32.
Nguyen Ngoc
,
H.
,
Lasa
,
G.
, and
Iriarte
,
I.
,
2022
, “
Human-Centred Design in Industry 4.0: Case Study Review and Opportunities for Future Research
,”
J. Intell. Manuf.
,
33
(
1
), pp.
35
76
.10.1007/s10845-021-01796-x
33.
Wang
,
B.
,
Xue
,
Y.
,
Yan
,
J.
,
Yang
,
X.
, and
Zhou
,
Y.
,
2020
, “
Human-Centered Intelligent Manufacturing: Overview and Perspectives
,”
Chin. J. Eng. Sci.
,
22
(
4
), p.
139
.10.15302/J-SSCAE-2020.04.020
34.
Wang
,
B.
,
Zheng
,
P.
,
Yin
,
Y.
,
Shih
,
A.
, and
Wang
,
L.
,
2022
, “
Toward Human-Centric Smart Manufacturing: A Human-Cyber-Physical Systems (HCPS) Perspective
,”
J. Manuf. Syst.
,
63
, pp.
471
490
.10.1016/j.jmsy.2022.05.005
You do not currently have access to this content.