Abstract

In the early-stage development of sheet metal parts, key design properties of new structures must be specified. As these decisions are made under significant uncertainty regarding drawing configuration changes, they sometimes result in the development of new parts that, at a later design stage, will not be drawable. As a result, there is a need to increase the certainty of experience-driven drawing configuration decisions. Complementing this process with a global sensitivity analysis (GSA) can provide insight into the impact of various changes in drawing configurations on drawability, unveiling cost-effective strategies to ensure the drawability of new parts. However, when quantitative global sensitivity approaches, such as Sobol's method, are utilized, the computational requirements for obtaining Sobol indices can become prohibitive even for small application problems. To circumvent computational limitations, we evaluate the applicability of different surrogate models engaged in computing global design variable sensitivities for the drawability assessment of a deep-drawn component. Here, we show in an exemplary application problem, that both a standard Gaussian process regression (GPR) model and an ensemble model can provide commendable results at a fraction of the computational cost. We compare our surrogate models to existing approaches in the field. Furthermore, by comparing drawability measures we show that the error introduced by the surrogate models is of the same order of magnitude as that from the choice of drawability measure. In consequence, our surrogate models can improve the cost-effective development of a component in the early design phase.

References

1.
Makinouchi
,
A.
,
1996
, “
Sheet Metal Forming Simulation in Industry
,”
J. Mater. Process. Tech.
,
60
(
1–4
), pp.
19
26
.10.1016/0924-0136(96)02303-5
2.
Ablat
,
M. A.
, and
Qattawi
,
A.
,
2016
, “
Numerical Simulation of Sheet Metal Forming: A Review
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
1235
1250
.10.1007/s00170-016-9103-5
3.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2007
,
Global Sensitivity Analysis
,
The Primer, Wiley, Ltd
, Hoboken, NJ.
4.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
5.
Kott
,
M.
,
Kraft
,
M.
,
Emrich
,
A.
, and
Groche
,
P.
,
2021
, “
Variance Based Sensitivity Analysis of Deep Drawing Processes Based on Neural Networks Using Sobol Indices
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1157
(
1
), p.
012089
.10.1088/1757-899X/1157/1/012089
6.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.10.1080/00401706.1991.10484804
7.
Sobol
,
I. M.
,
1993
, “
Sensitivity Analysis for Nonlinear Mathematical Models
,”
Math. Model. Comput. Exp.
,
1
, pp.
407
414
.
8.
Padmanabhan
,
R.
,
Oliveira
,
M.
,
Alves
,
J.
, and
Menezes
,
L.
,
2007
, “
Influence of Process Parameters on the Deep Drawing of Stainless Steel
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1062
1067
.10.1016/j.finel.2007.06.011
9.
Sattari
,
H.
,
Sedaghati
,
R.
, and
Ganesan
,
R.
,
2007
, “
Analysis and Design Optimization of Deep Drawing Process
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
84
92
.10.1016/j.jmatprotec.2006.11.008
10.
Ciuffo
,
B.
,
Casas
,
J.
,
Montanino
,
M.
,
Perarnau
,
J.
, and
Punzo
,
V.
,
2013
, “
Gaussian Process Metamodels for Sensitivity Analysis of Traffic Simulation Models
,”
Transportation Res. Rec.
,
2390
(
1
), pp.
87
98
.10.3141/2390-10
11.
Ge
,
Q.
,
Ciuffo
,
B.
, and
Menendez
,
M.
,
2015
, “
Combining Screening and Metamodel-Based Methods: An Efficient Sequential Approach for the Sensitivity Analysis of Model Outputs
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
334
344
.10.1016/j.ress.2014.08.009
12.
Fruth
,
J.
,
2015
, “
Sensitivity Analysis and Graph-Based Methods for Black-Box Functions With on Application to Sheet Metal Forming
,”
Ph.D. thesis
,
TU Dortmund University and Mines Saint-Etienne
.https://theses.hal.science/tel-01151170v1/document
13.
Lehrer
,
T.
,
Kaps
,
A.
,
Daiminger
,
T.
,
Lepenies
,
I.
,
Wagner
,
M.
, and
Duddeck
,
F.
,
2022
, “
Analysis of Global Sensitivities for One-Step and Multi-Step Deep-Drawing Simulations
,”
16th LS-DYNA Forum
, Bamberg, Germany, Oct. 11–13, pp.
117
118
.https://www.dynamore.de/de/fortbildung/konferenzen/vergangene/16-ls-dyna-forum-2022/2022-proceedings.pdf
14.
Lehrer
,
T.
,
Kaps
,
A.
,
Lepenies
,
I.
,
Wagner
,
M.
, and
Duddeck
,
F.
,
2023
, “
2S-ML: A Simulation-Based Classification and Regression Approach for Drawability Assessment in Deep Drawing
,”
Int. J. Mater. Form.
,
16
(
5
), p.
56
.10.1007/s12289-023-01770-3
15.
Lataniotis
,
C.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2021
, “
Uncertainty Quantification in the Cloud With UQCloud
,”
Proceedings of the 4th International Conference on Uncertainty Quan-Tification in Computational Sciences and Engineering (UNCECOMP2021)
, Athens, Greece, June 28–30, pp.
209
217
.10.7712/120221.8033.18990
16.
van Stein
,
B.
,
Raponi
,
E.
,
Sadeghi
,
Z.
,
Bouman
,
N.
,
van Ham
,
R. C. H. J.
, and
Bäck
,
T.
,
2022
, “
A Comparison of Global Sensitivity Analysis Methods for Explainable AI With an Application in Genomic Prediction
,”
IEEE Access
,
10
, pp.
103364
103381
.10.1109/ACCESS.2022.3210175
17.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling
,
Wiley Inc
., Hoboken, NJ.
18.
Garud
,
S. S.
,
Karimi
,
I. A.
, and
Kraft
,
M.
,
2017
, “
Design of Computer Experiments: A Review
,”
Comput. Chem. Eng.
,
106
, pp.
71
95
.10.1016/j.compchemeng.2017.05.010
19.
Niederreiter
,
H.
,
1992
,
Random Number Generation and quasi-Monte Carlo Methods
,
Siam
, Philadelphia, PA.
20.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp.
280
297
.10.1016/S0010-4655(02)00280-1
21.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
22.
Rajabi
,
M. M.
,
Ataie-Ashtiani
,
B.
, and
Janssen
,
H.
,
2015
, “
Efficiency Enhancement of Optimized Latin Hypercube Sampling Strategies: Application to Monte Carlo Uncertainty Analysis and Meta-Modeling
,”
Adv. Water Resour.
,
76
, pp.
127
139
.10.1016/j.advwatres.2014.12.008
23.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plann. Inference
,
43
(
3
), pp.
381
402
.10.1016/0378-3758(94)00035-T
24.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
,
2000
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plann. Inference
,
90
(
1
), pp.
145
159
.10.1016/S0378-3758(00)00105-1
25.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plann. Inference
,
134
(
1
), pp.
268
287
.10.1016/j.jspi.2004.02.014
26.
Herman
,
J.
, and
Usher
,
W.
,
2017
, “
SALib: An Open-Source Python Library for Sensitivity Analysis
,”
J. Open Source Software
,
2
(
9
), p.
97
.10.21105/joss.00097
27.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
,
Springer
,
Berlin and Heidelberg
.
28.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London. Ser. A
,
193
(
1033
), pp.
281
297
.10.1098/rspa.1948.0045
29.
Hockett
,
J. E.
, and
Sherby
,
O. D.
,
1975
, “
Large Strain Deformation of Polycrystalline Metals at Low Homologous Temperatures
,”
J. Mech. Phys. Solids
,
23
(
2
), pp.
87
98
.10.1016/0022-5096(75)90018-6
30.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.10.1147/rd.112.0215
31.
Wagner
,
M.
,
2019
,
Lineare Und Nichtlineare FEM
,
Springer Fachmedien Wiesbaden
,
Wiesbaden
.
32.
Neukamm
,
F.
,
Feucht
,
M.
,
Haufe
,
A.
, and
Roll
,
K.
,
2008
, “
On Closing the Constitutive Gap Between Forming and Crash Simulation
,”
10th International LS-DYNA Conference
, Dearborn, MI, June 8–10.https://www.researchgate.net/publication/312039751_On_closing_the_Constitutive_Gap_between_Forming_and_Crash_Simulation
33.
Guo
,
Y.
,
Batoz
,
J.
,
Naceur
,
H.
,
Bouabdallah
,
S.
,
Mercier
,
F.
, and
Barlet
,
O.
,
2000
, “
Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach
,”
Comput. Struct.
,
78
(
1–3
), pp.
133
148
.10.1016/S0045-7949(00)00095-X
34.
Naceur
,
H.
,
Guo
,
Y.
,
Batoz
,
J.
, and
Knopf-Lenoir
,
C.
,
2001
, “
Optimization of Drawbead Restraining Forces and Drawbead Design in Sheet Metal Forming Process
,”
Int. J. Mech. Sci.
,
43
(
10
), pp.
2407
2434
.10.1016/S0020-7403(01)00014-5
35.
Sun
,
G.
,
Li
,
G.
,
Zhou
,
S.
,
Xu
,
W.
,
Yang
,
X.
, and
Li
,
Q.
,
2011
, “
Multi-Fidelity Optimization for Sheet Metal Forming Process
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
111
124
.10.1007/s00158-010-0596-5
36.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
MIT Press Ltd
, Cambridge, MA.
37.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.10.48550/arXiv.1201.0490
38.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.10.1137/0916069
39.
Toal
,
D. J. J.
,
Bressloff
,
N. W.
, and
Keane
,
A. J.
,
2008
, “
Kriging Hyperparameter Tuning Strategies
,”
AIAA J.
,
46
(
5
), pp.
1240
1252
.10.2514/1.34822
40.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.https://hdl.handle.net/10520/AJA0038223X_4792
41.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.10.2113/gsecongeo.58.8.1246
42.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
43.
Wolpert
,
D. H.
,
1992
, “
Stacked Generalization
,”
Neural Networks
,
5
(
2
), pp.
241
259
.10.1016/S0893-6080(05)80023-1
44.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.10.1007/BF00058655
45.
Wolpert
,
D. H.
, and
Macready
,
W. G.
,
1996
, “
Combining Stacking With Bagging to Improve a Learning Algorithm
,” Semantic Scholar, Seattle, WA, accessed Apr. 20, 2023, https://api.semanticscholar.org/CorpusID:10422484
46.
Zhou
,
Z.-H.
,
2012
,
Ensemble Methods: Foundations and Algorithms
,
Chapman & Hall/CRC Machine Learning & Pattern Recognition, CRC Press
,
Hoboken, NJ
.
47.
Mendes-Moreira
,
J.
,
Soares
,
C.
,
Jorge
,
A. M.
, and
de Sousa
,
J. F.
,
2012
, “
Ensemble Approaches for Regression
,”
ACM Comput. Surv.
,
45
(
1
), pp.
1
40
.10.1145/2379776.2379786
48.
Breiman
,
L.
,
1996
, “
Stacked Regressions
,”
Mach. Learn.
,
24
(
1
), pp.
49
64
.10.1007/BF00117832
49.
van Stein
,
B.
, and
Raponi
,
E.
,
2022
, “
GSAreport: Easy to Use Global Sensitivity Reporting
,”
J. Open Source Software
,
7
(
78
), p.
4721
.10.21105/joss.04721
50.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
Vulnerability, Uncertainty, and Risk
,
M.
Beer
,
S.-K.
Au
, and
J. W.
Hall
, eds.,
American Society of Civil Engineers
,
Reston, VA
, pp.
2554
2563
.
You do not currently have access to this content.