To investigate the resilience of interconnected critical infrastructures (CIs), a framework combining dynamic modeling and resilience analysis is proposed. Resilience is defined in this work as the capacity of a system to absorb the impacts of perturbations and recover quickly from disruptive states. It is seen as a property of the system, which depends on a number of design, operation, and control parameters. Within this framework, we introduce the concept of resilience regions in the parameters space: as long as the parameters values remain inside these regions during operation, the system visits only recoverable states or, in other words, it maintains nominal operation or recovers quickly to it. Based on this concept, we perform a resilience analysis of two interconnected critical infrastructures, a gas network and an electric power system. The analysis is performed by numerical calculation of the resilience conditions in terms of design, operation, and control parameters values for given failure scenarios. To render computationally feasible analysis, we resort to an abstract representation of the system dynamics by a linear model of switching dynamics. Although the high-level modeling adopted may suffer from predictive accuracy, the proposed framework can still provide valuable insights in the analysis of system resilience and its dependence on the design, operation, and control parameters under different failure scenarios, which can be valuable to inform the decision making process of CIs operators and other stakeholders.
Skip Nav Destination
Article navigation
June 2017
Research-Article
Resilience Analysis Framework for Interconnected Critical Infrastructures
X. Liu,
X. Liu
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: xing.liu@ecp.fr
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: xing.liu@ecp.fr
Search for other works by this author on:
E. Ferrario,
E. Ferrario
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: elisa.ferrario@ecp.fr
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: elisa.ferrario@ecp.fr
Search for other works by this author on:
E. Zio
E. Zio
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: enrico.zio@ecp.fr;
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: enrico.zio@ecp.fr;
Department of Energy,
Politecnico di Milano and Via,
Ponzio, 34/3, Milano 20133, Italy
e-mail: enrico.zio@polimi.it
Politecnico di Milano and Via,
Ponzio, 34/3, Milano 20133, Italy
e-mail: enrico.zio@polimi.it
Search for other works by this author on:
X. Liu
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: xing.liu@ecp.fr
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: xing.liu@ecp.fr
E. Ferrario
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: elisa.ferrario@ecp.fr
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: elisa.ferrario@ecp.fr
E. Zio
Chair on Systems Science
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: enrico.zio@ecp.fr;
and the Energetic Challenge,
Foundation Electricité de France (EDF),
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
Grande voie des Vignes,
Chatenay-Malabry 92290, France
e-mail: enrico.zio@ecp.fr;
Department of Energy,
Politecnico di Milano and Via,
Ponzio, 34/3, Milano 20133, Italy
e-mail: enrico.zio@polimi.it
Politecnico di Milano and Via,
Ponzio, 34/3, Milano 20133, Italy
e-mail: enrico.zio@polimi.it
1Corresponding author.
Manuscript received December 4, 2015; final manuscript received August 5, 2016; published online February 20, 2017. Assoc. Editor: Konstantin Zuev.
ASME J. Risk Uncertainty Part B. Jun 2017, 3(2): 021001 (10 pages)
Published Online: February 20, 2017
Article history
Received:
December 4, 2015
Revised:
August 5, 2016
Citation
Liu, X., Ferrario, E., and Zio, E. (February 20, 2017). "Resilience Analysis Framework for Interconnected Critical Infrastructures." ASME. ASME J. Risk Uncertainty Part B. June 2017; 3(2): 021001. https://doi.org/10.1115/1.4035728
Download citation file:
Get Email Alerts
Paradox of Optimal Learning: An Info-Gap Perspective
ASME J. Risk Uncertainty Part B
Robust Design Optimization of Expensive Stochastic Simulators Under Lack-of-Knowledge
ASME J. Risk Uncertainty Part B (June 2023)
Sequential Ensemble Monte Carlo Sampler for On-Line Bayesian Inference of Time-Varying Parameter in Engineering Applications
ASME J. Risk Uncertainty Part B (September 2023)
Probabilistic Validation: Theoretical Foundation and Methodological Platform
ASME J. Risk Uncertainty Part B (June 2023)
Related Articles
Resilience of Electricity Distribution Networks Against Extreme Weather Conditions
ASME J. Risk Uncertainty Part B (June,2017)
Special Issue on Complex Engineered Networks: Reliability, Risk, and Uncertainty
ASME J. Risk Uncertainty Part B (June,2017)
Evaluating the Magnitude and Spatial Extent of Disruptions Across Interdependent National Infrastructure Networks
ASME J. Risk Uncertainty Part B (June,2020)
Synthetic Fault Mode Generation for Resilience Analysis and Failure Mechanism Discovery
J. Mech. Des (March,2023)
Articles from Part A: Civil Engineering
Practical Resilience Metrics for Planning, Design, and Decision Making
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (September,2015)
Bi-Objective Vulnerability-Reduction Formulation for a Network under Diverse Attacks
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (December,2017)
Inoperability Input-Output Modeling: Inventory Optimization and Resilience Estimation during Critical Events
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (September,2016)
Special Collection on Resilience Quantification and Modeling for Decision Making
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (September,2020)
Related Proceedings Papers
Related Chapters
Speedup Resilience: A Practical Metric to Explore the Performance Boundary of Multicore Architectures
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
The Human Factor in Network System Survivability (PSAM-0090)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
“Vulnerability Avoidance” Investment: A Financial Justification of Expenditures for the Improved Resilience of Enterprises (PSAM-0463)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)