Abstract

The seismic safety of an arch dam is analyzed by calculating fragility curves for different damage and failure mechanisms. The model includes fluid–structure–foundation interaction and considers contact and material type nonlinearities. The ultimate limit state (failure) is studied by means of a plastic-damage concrete model, especially developed for cyclic loadings. The time histories of the ground motions are generated randomly by means of Kanai–Tajimi filter. Moreover, ten parameters of the model are considered as random variables, including the water level. To the best knowledge of the authors, for the first time, water-level variability is accounted for in a probabilistic seismic analysis of a dam. It is studied if it is admissible to increase the efficiency of the Monte Carlo simulation (MCS) by assuming lognormal distributions for the fragility curves. In general, the aim of this work is to show the possibilities and difficulties of probabilistic seismic analysis tools when applied to a sophisticated mechanical model of a real structure.

References

1.
Hall
,
J. F.
,
1998
, “
Efficient Non-Linear Seismic Analysis of Arch Dams
,”
Earthquake Eng. Struct. Dyn.
,
27
(
12
), pp.
1425
1444
.10.1002/(SICI)1096-9845(199812)27:12<1425::AID-EQE793>3.0.CO;2-H
2.
Chopra
,
A. K.
,
2012
, “
Earthquake Analysis of Arch Dams: Factors to Be Considered
,”
J. Struct. Eng.
,
138
(
2
), pp.
205
214
.10.1061/(ASCE)ST.1943-541X.0000431
3.
Zhang
,
C.
,
Jin
,
F.
,
Wang
,
J.
, and
Xu
,
Y.
,
2013
,
Seismic Safety Evaluation of Concrete Dams: A Nonlinear Behavioral Approach
,
Butterworth Heinemann
, Oxford, UK.
4.
Kisliakov
,
D.
,
1997
, “
Seismic Risk Analysis of Concrete Gravity Dams-Problems and Solutions
,”
International Conference on Hydropower
, Vol.
97
(unpublished).
5.
de Araújo
,
J.
, and
Awruch
,
A. M.
,
1998
, “
Probabilistic Finite Element Analysis of Concrete Gravity Dams
,”
Adv. Eng. Software
,
29
(
2
), pp.
97
104
.10.1016/S0965-9978(98)00052-0
6.
Tekie
,
P. B.
, and
Ellingwood
,
B. R.
,
2003
, “
Seismic Fragility Assessment of Concrete Gravity Dams
,”
Earthquake Eng. Struct. Dyn.
,
32
(
14
), pp.
2221
2240
.10.1002/eqe.325
7.
Ghanaat
,
Y.
,
Patev
,
R. C.
, and
Chudgar
,
A. K.
,
2012
, “
Seismic Fragility Analysis of Concrete Gravity Dams
,”
15th World Conference on Earthquake Engineering
, Lisbon, Portugal, Sept. 24–28, pp. 25172–25181.
8.
Ju
,
M.
,
Guoyan
,
Z.
,
Longjun
,
D.
,
Guanghui
,
C.
, and
Chuxuan
,
Z.
,
2015
, “
A Comparison of Mine Seismic Discriminators Based on Features of Source Parameters to Waveform Characteristics
,”
Shock Vib.
,
2015
, p.
919143
.10.1155/2015/919143
9.
Bernier
,
C.
,
Monteiro
,
R.
, and
Paultre
,
P.
,
2016
, “
Using the Conditional Spectrum Method for Improved Fragility Assessment of Concrete Gravity Dams in Eastern Canada
,”
Earthquake Spectra
,
32
(
3
), pp.
1449
1468
.10.1193/072015EQS116M
10.
Hariri-Ardebili
,
M. A.
, and
Kianoush
,
M. R.
,
2014
, “
Integrative Seismic Safety Evaluation of a High Concrete Arch Dam
,”
Soil Dyn. Earthquake Eng.
,
67
, pp.
85
101
.10.1016/j.soildyn.2014.08.014
11.
Hariri-Ardebili
,
M. A.
,
Saouma
,
V. E.
, and
Porter
,
K. A.
,
2016
, “
Quantification of Seismic Potential Failure Modes in Concrete Dams
,”
Earthquake Eng. Struct. Dyn.
,
45
(
6
), pp.
979
997
.10.1002/eqe.2697
12.
Hariri-Ardebili
,
M. A.
, and
Saouma
,
V. E.
,
2016
, “
Collapse Fragility Curves for Concrete Dams: Comprehensive Study
,”
J. Struct. Eng.
,
142
(
10
), p.
04016075
.10.1061/(ASCE)ST.1943-541X.0001541
13.
Hariri-Ardebili
,
M. A.
, and
Saouma
,
V. E.
,
2016
, “
Probabilistic Seismic Demand Model and Optimal Intensity Measure for Concrete Dams
,”
Struct. Saf.
,
59
, pp.
67
85
.10.1016/j.strusafe.2015.12.001
14.
Hariri-Ardebili
,
M. A.
, and
Saouma
,
V. E.
,
2016
, “
Seismic Fragility Analysis of Concrete Dams: A State-of-the-Art Review
,”
Eng. Struct.
,
128
, pp.
374
399
.10.1016/j.engstruct.2016.09.034
15.
Varbanov
,
G.
,
Kostov
,
M.
,
Andonov
,
A.
,
Apostolov
,
K.
, and
Iliev
,
A.
,
2012
, “
Seismic Risk Assessment of Large Dams
,”
15th World Conference on Earthquake Engineering
, Lisbon, Portugal, Sept. 24–28, pp. 8558–8568.
16.
Gasser
,
C.
, and
Bucher
,
C.
,
2017
, “
Seismic Safety Assessment by an Enhanced Monte Carlo Method
,”
International Conference on Uncertainty Quantification in Computational Sciences and Engineering
, Rhodes, Greece, June 15–17, pp. 671–679.https://pdfs.semanticscholar.org/99e8/34136887cd5e3a4e50f874956501facd51fb.pdf
17.
Shinozuka
,
M.
,
Feng
,
M. Q.
,
Lee
,
J.
, and
Naganuma
,
T.
,
2000
, “
Statistical Analysis of Fragility Curves
,”
J. Eng. Mech.
,
126
(
12
), pp.
1224
1231
.10.1061/(ASCE)0733-9399(2000)126:12(1224)
18.
Sudret
,
B.
,
Mai
,
C.
, and
Konakli
,
K.
,
2017
, “
Assessment of the Lognormality Assumption of Seismic Fragility Curves Using Non-Parametric Representations
,” preprint
arXiv: 1403.5481
.
19.
Chopra
,
A. K.
,
1992
, “
Earthquake Analysis, Design and Safety Evaluation of Concrete Arch Dams
,” Tenth World Conference on Earthquake Engineering, Vol. 11, pp.
6763
6772
.
20.
Lubliner
,
J.
,
Oliver
,
J.
,
Oller
,
S.
, and
Oñate
,
E.
,
1989
, “
A Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
25
(
3
), pp.
299
326
.10.1016/0020-7683(89)90050-4
21.
Lee
,
J.
, and
Fenves
,
G. L.
,
1998
, “
Plastic-Damage Model for Cyclic Loading of Concrete Structures
,”
J. Eng. Mech.
,
124
(
8
), pp.
892
900
.10.1061/(ASCE)0733-9399(1998)124:8(892)
22.
Goldgruber
,
M.
,
2015
, “
Nonlinear Seismic Modelling of Concrete Dams
,”
Ph.D. thesis
, TU, Graz, Austria.
23.
CEN
,
2005
, “
Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings
,” CEN, Brussels, Belgium, Standard No. EN 1992-1-1.
24.
fib
,
2012
, “
Model Code 2010
,” The International Federation for Structural Concrete (fib), Lausanne, Switzerland, Bulletin 65.
25.
Krätzig
,
W. B.
, and
Pölling
,
R.
,
2004
, “
An Elasto-Plastic Damage Model for Reinforced Concrete With Minimum Number of Material Parameters
,”
Comput. Struct.
,
82
(
15
), pp.
1201
1215
.10.1016/j.compstruc.2004.03.002
26.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matér. Constr.
,
16
(
3
), pp.
155
177
.10.1007/BF02486267
27.
Feenstra
,
P. H.
,
1993
, “
Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Afaf2fd16-1c43-4711-b783-9e8e00d10c21
28.
Alfarah
,
B.
,
López-Almansa
,
F.
, and
Oller
,
S.
,
2017
, “
New Methodology for Calculating Damage Variables Evolution in Plastic Damage Model for RC Structures
,”
Eng. Struct.
,
132
, pp.
70
86
.10.1016/j.engstruct.2016.11.022
29.
Dassault Systèmes
,
2014
, “
Abaqus 6.14 Online Documentation
,”
Dassault Systèmes
, Vélizy-Villacoublay, France.
30.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P.-E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
31.
Lee
,
J.
, and
Fenves
,
G. L.
,
1998
, “
A Plastic-Damage Concrete Model for Earthquake Analysis of Dams
,”
Earthquake Eng. Struct. Dyn.
,
27
(
9
), pp.
937
956
.10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
32.
Chopra
,
A. K.
, and
Chakrabarti
,
P.
,
1972
, “
The Earthquake Experience at Koyna Dam and Stresses in Concrete Gravity Dams
,”
Earthquake Eng. Struct. Dyn.
,
1
(
2
), pp.
151
164
.10.1002/eqe.4290010204
33.
Chopra
,
A. K.
, and
Chakrabarti
,
P.
,
1973
, “
The Koyna Earthquake and the Damage to Koyna Dam
,”
Bull. Seismol. Soc. Am.
,
63
(
2
), p.
381
.
34.
Bhattacharjee
,
S. S.
, and
Léger
,
P.
,
1993
, “
Seismic Cracking and Energy Dissipation in Concrete Gravity Dams
,”
Earthquake Eng. Struct. Dyn.
,
22
(
11
), pp.
991
1007
.10.1002/eqe.4290221106
35.
Ghrib
,
F.
, and
Tinawi
,
R.
,
1995
, “
An Application of Damage Mechanics for Seismic Analysis of Concrete Gravity Dams
,”
Earthquake Eng. Struct. Dyn.
,
24
(
2
), pp.
157
173
.10.1002/eqe.4290240203
36.
Cervera
,
M.
,
Oliver
,
J.
, and
Manzoli
,
O.
,
1996
, “
A Rate-Dependent Isotropic Damage Model for the Seismic Analysis of Concrete Dams
,”
Earthquake Eng. Struct. Dyn.
,
25
(
9
), pp.
987
1010
.10.1002/(SICI)1096-9845(199609)25:9<987::AID-EQE599>3.0.CO;2-X
37.
Dassault Systèmes
,
2014
, “
Abaqus Example Problems Guide
,”
Dassault Systèmes
, Vélizy-Villacoublay, France.
38.
Clough
,
R.
,
1980
, “
Non-Linear Mechanisms in the Seismic Response of Arch Dams
,”
International Research Conference on Earthquake Engineering
, Skopje, Yugoslavia, June 30–July 3, pp.
669
–6
84
.
39.
Lysmer
,
J.
, and
Kuhlemeyer
,
R.
,
1969
, “
Finite Dynamic Model for Infinite Media
,”
J. Eng. Mech. Div. (ASCE)
,
95
, pp.
859
878
.
40.
Saouma
,
V.
,
Miura
,
F.
,
Lebon
,
G.
, and
Yagome
,
Y.
,
2011
, “
A Simplified 3D Model for Soil-Structure Interaction With Radiation Damping and Free Field Input
,”
Bull. Earthquake Eng.
,
9
(
5
), p.
1387
.10.1007/s10518-011-9261-7
41.
Chuhan
,
Z.
,
Jianwen
,
P.
, and
Jinting
,
W.
,
2009
, “
Influence of Seismic Input Mechanisms and Radiation Damping on Arch Dam Response
,”
Soil Dyn. Earthquake Eng.
,
29
(
9
), pp.
1282
1293
.10.1016/j.soildyn.2009.03.003
42.
Wang
,
J.-T.
, and
Chopra
,
A. K.
,
2010
, “
Linear Analysis of Concrete Arch Dams Including Dam–Water–Foundation Rock Interaction Considering Spatially Varying Ground Motions
,”
Earthquake Eng. Struct. Dyn.
,
39
(
7
), pp.
731
750
.10.1002/eqe.968
43.
Løkke
,
A.
, and
Chopra
,
A. K.
,
2018
, “
Direct Finite Element Method for Nonlinear Earthquake Analysis of 3-Dimensional Semi-Unbounded Dam–Water–Foundation Rock Systems
,”
Earthquake Eng. Struct. Dyn.
,
47
(
5
), pp.
1309
1328
.10.1002/eqe.3019
44.
Penner
,
O.
,
Bergmann
,
B.
,
Razavi-Darbar
,
S.
,
Queen
,
D.
,
Léger
,
P.
,
Boivin
,
Y.
, and
Leclerc
,
M.
,
2017
, “
Non-Linear Time Domain Analysis of Ruskin Dam in LS-DYNA Including Reservoir-Foundation-Structure Interaction
,”
37th Annual USSD Conference
, Anaheim, CA, Apr. 3–7.
45.
Kadkhodayan
,
V.
,
Aghajanzadeh
,
S. M.
, and
Mirzabozorg
,
H.
, 2015, “
Seismic Assessment of Arch Dams Using Fragility Curves
,”
Civ. Eng. J.
,
1
(2), pp. 14–20.
46.
Bucher
,
C.
,
2009
,
Computational Analysis of Randomness in Structural Mechanics: Structures and Infrastructures Book Series, Structures and Infrastructures
,
CRC Press
, Boca Raton, FL.
47.
Clough
,
R.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures, Civil Engineering Series
,
McGraw-Hill
, New York.
48.
Wittke
,
W.
,
2014
,
Rock Mechanics: Theory and Applications With Case Histories
,
Springer
,
Berlin
.
49.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.10.1016/S0167-4730(02)00039-5
50.
Hong
,
H.-S.
, and
Hickernell
,
F.
,
2003
, “
Algorithm 823: Implementing Scrambled Digital Sequences
,”
ACM Trans. Math. Software
,
29
(
2
), pp.
95
109
.10.1145/779359.779360
51.
Caflisch
,
R. E.
,
Morokoff
,
W.
, and
Owen
,
A.
,
1997
, “
Valuation of Mortgage Backed Securities Using Brownian Bridges to Reduce Effective Dimension
,”
J. Comput. Finance
,
1
(
1
), pp.
27
46
.10.21314/JCF.1997.005
52.
Kucherenko
,
S.
,
Feil
,
B.
,
Shah
,
N.
, and
Mauntz
,
W.
,
2011
, “
The Identification of Model Effective Dimensions Using Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
96
(
4
), pp.
440
449
.10.1016/j.ress.2010.11.003
53.
Gasser
,
C.
, and
Bucher
,
C.
,
2018
, “
An Optimized Strategy for Using Asymptotic Sampling for Reliability Analysis
,”
Struct. Saf.
,
71
, pp.
33
40
.10.1016/j.strusafe.2017.11.002
54.
Sobol
,
I. M.
, and
Asotsky
,
D. I.
,
2003
, “
One More Experiment on Estimating High-Dimensional Integrals by Quasi-Monte Carlo Methods
,”
Math. Comput. Simul.
,
62
, pp.
255
263
.10.1016/S0378-4754(02)00228-8
55.
Office of Nuclear Regulatory Research,
1983
, “
Office of Nuclear Regulatory Research, PRA Procedures Guide: A Guide to the Performance of Probabilistic Risk Assessment for Nuclear Power Plants
,” Office of Nuclear Regulatory Research, Report No.
NUREG/CR-2300
.
You do not currently have access to this content.