Abstract

Semi-active actuators have been used in engineering systems for vibration control purposes. For instance, magnetorheological (MR) dampers are applied in support of vehicle seats and smart suspensions of bridges and buildings. Parametric and nonparametric approaches were developed to model MR actuators, in which the former presents well-established and representative models. In this context, this work aims at comparing the so-called Bingham, modified Bouc-Wen (BW), and hysteretic models dedicated to MR actuators. Typical inverse problems were solved to minimize the difference between the forces determined by using these models and experimental data. The obtained results demonstrated that the hysteretic model is better adapted to represent the considered MR actuator, presenting lower computational cost and easy implementation. Additionally, uncertainty and sensitivity analyses based on the interval approach were applied on the updated MR models aiming to determine the working envelopes associated with the most important parameters of the models.

References

1.
Bai
,
X.
,
Wereley
,
N.
, and
Choi
,
Y.
,
2016
, “
Magnetorheological Energy Absorber With Dual Concentric Annular Valves
,”
J. Intell. Mater. Syst. Struct.
,
27
(
7
), pp.
944
958
.10.1177/1045389X15577659
2.
Zhang
,
Q.
,
Liu
,
X.
,
Ren
,
Y.
,
Wang
,
L.
, and
Hu
,
Y.
,
2016
, “
Effect of Particle Size on the Wear Property of Magnetorheological Fluid
,”
Adv. Mater. Sci. Eng.
,
2016
, p.
4740986
.10.1155/2016/4740986
3.
Cavalini
,
A. A.
, Jr.
,
Koroishi
,
E.
,
Borges
,
A.
,
Pereira
,
L.
, and
Steffen
,
V.
, Jr.
,
2015
, “
Semi-Active Vibration Control of a Rotating Shaft by Using a Magneto Rheological Damper
,”
23th ABCM International Congress of Mechanical Engineering
, Curitiba, Brazil, Dec. 3–8, pp.
1
10
.
4.
Crosby
,
M.
, and
Karnopp
,
D.
,
1973
, “
The Active Damper: A New Concept for Shock and Vibration Control
,”
Shock Vib.
,
1
(
1
), pp.
119
133
.
5.
Klinger
,
D.
,
Cooperrider
,
N.
,
Hedrick
,
J.
,
White
,
R.
,
Cilzado
,
A.
,
Sayers
,
M.
, and
Wormley
,
D.
,
1976
, “
Guideway Vehicle Cost Reduction
,” Arizona State University, Tempe, AZ.
6.
Margolis
,
D.
, and
Hrovat
,
D.
,
1976
, “
Semi-Active Heave and Pitch Control of a High Speed Tracked Air Cushion Vehicle
,” Fourth
Intersociety Transportation Conference
, Los Angeles, CA, July 18–23, pp.
31
42
.
7.
Miller
,
L.
, and
Nobles
,
C.
,
1988
, “
The Design and Development of a Semi-Active Suspension for a Military Tank
,”
SAE
Paper No. 881133.10.4271/881133
8.
Barber
,
D.
,
2013
, “
MR Fluids at the Extremes: High-Energy and Low-Temperature Performance of LORD® MR Fluids and Devices
,”
Magnetorheology: Advances and Applications
,
N. M.
Wereley
, ed.,
Royal Society of Chemistry Publisher
,
London
, pp.
74
95
.
9.
Xiaomin
,
X.
,
Qing
,
S.
,
Ling
,
Z.
, and
Bin
,
Z.
,
2009
, “
Parameter Estimation and Its Sensitivity Analysis of the MR Damper Hysteresis Model Using a Modified Genetic Algorithm
,”
J. Intell. Mater. Syst. Struct.
,
20
(
17
), pp.
2089
2100
.10.1177/1045389X09343789
10.
Caicedo
,
J. M.
,
Jiang
,
Z.
, and
Baxter
,
S. C.
,
2017
, “
Including Uncertainty in Modeling the Dynamic Response of a Large-Scale 200 kN Magneto-Rheological Damper
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
3
(
2
), p.
G4016002
.10.1061/AJRUA6.0000873
11.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall/CRC
,
London
.
12.
Möller
,
B.
, and
Beer
,
M.
,
1993
,
Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
,
Springer-Verlag
,
Berlin
.
13.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
2013
,
Convex Models of Uncertainty in Applied Mechanics
, Vol.
25
,
Elsevier
,
North Holland, The Netherlands
.
14.
Dyke
,
S.
,
1997
, “
Acceleration Feedback Control Strategies for Active and Semi-Active Control Systems: Modeling, Algorithm Development, and Experimental Verification
,”
Ph.D. thesis
, University of Notre Dame, Notre Dame, IN.https://engineering.purdue.edu/IISL/Publications/DSc_Dissertations/Shirley_Dyke.pdf
15.
Truong
,
D.
, and
Ahn
,
K.
,
2012
, “
MR Fluid Damper and Its Application to Force Sensorless Damping Control System
,”
Smart Actuation and Sensing Systems
,
G.
Berselli
, ed.,
INTECH Open Access Publisher
,
London
, pp.
383
424
.
16.
Stanway
,
R.
,
Sproston
,
J.
, and
Stevens
,
N.
,
1987
, “
Non-Linear Modelling of an Electrorheological Vibration Damper
,”
J. Electrost.
,
20
(
2
), pp.
167
184
.10.1016/0304-3886(87)90056-8
17.
Wen
,
Y.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.
18.
Kwok
,
N.
,
Ha
,
Q.
,
Nguyen
,
T.
,
Li
,
J.
, and
Samali
,
B.
,
2006
, “
A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization
,”
Sens. Actuators, A
,
132
(
2
), pp.
441
451
.10.1016/j.sna.2006.03.015
19.
Modares
,
M.
, and
Mullen
,
R. L.
,
2013
, “
Dynamic Analysis of Structures With Interval Uncertainty
,”
J. Eng. Mech.
,
140
(
4
), p.
04013011
.10.1061/(ASCE)EM.1943-7889.0000660
20.
Hickey
,
T.
,
Ju
,
Q.
,
Van
,
E.
, and
Maarten
,
H.
,
2001
, “
Interval Arithmetic: From Principles to Implementation
,”
J. ACM
,
48
(
5
), pp.
1038
1068
.10.1145/502102.502106
21.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Interval Sensitivity Analysis of Dynamic Response Envelopes for Uncertain Mechanical Structures
,”
Third European Conference on Computational Mechanics
, Lisbon, Portugal, June 5–8, pp.
385
385
.
22.
Storn
,
R.
, and
Price
,
K.
,
1995
, “
Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
23
(
1
), pp.
1
12
.
23.
Liem
,
D.
,
Truong
,
D.
, and
Ahn
,
K.
,
2015
, “
Hysteresis Modeling of Magneto-Rheological Damper Using Self-Tuning Lyapunov Based Fuzzy Approach
,”
Int. J. Precis. Eng. Manuf.
,
16
(
1
), pp.
31
41
.10.1007/s12541-015-0004-6
You do not currently have access to this content.