Abstract

A method is developed to characterize the performance of voltage processes X(t) harvested from primary-absorber dynamical systems subjected to Gaussian forcing functions. The method is based on properties of the Slepian model of X(t) and Monte Carlo simulation. Statistics are calculated for excursions of X(t) above levels which can be related to energy demand. The duration and the area of these excursions are used as metrics for the voltage process. Their statistics depend on the topology and the parameters of primary-absorber dynamical systems, which can be optimized to maximize the output voltage.

References

1.
Priya
,
S.
, and
Inman
,
D. J.
eds.,
Energy Harvesting Technology
,
Springer
,
New York
.
2.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
.10.1115/1.4007967
3.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
4.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Prob. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
5.
Leadbetter
,
M. R.
,
Lindgren
,
G.
, and
Rootzén
,
H.
,
1983
,
Extremes and Related Properties of Random Sequences and Processes
,
Springer-Verlag
,
New York
.
6.
Adhikari
,
M. I.
,
Friswell
,
S.
,
Litak
,
G.
, and
Khodaparast
,
H. H.
,
2016
, “
Design and Analysis of Vibration Energy Harvesters Based on Peak Response Statistics
,”
Smart Mater. Struct.
,
25
(
6
), p.
065009
.10.1088/0964-1726/25/6/065009
7.
Grigoriu
,
M.
,
2002
,
Stochastic Calculus. Applications in Science and Engineering
,
Birkhäuser
,
Boston, MA
.
8.
Rychlik
,
I.
, and
Lindgren
,
G.
,
1990
, “
Crossreg, a Computer Code for First Passage and Wave Density Analysis
,” Technical Report,
University of Lund and Lund Institute of Technology, Department of Mathematical Statistics
,
Lund, Sweden
.
9.
Soong
,
T. T.
, and
Grigoriu
,
M.
,
1993
,
Random Vibration of Mechanical and Structural Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.