Abstract

The vibration level is a function of the defects in the bearing. By identifying a change in vibration level, one can predict the dynamic behavior and fault in the rotor-bearing system. An imminent bearing fault detection can reduce downtime or avoid the failure of rotating machinery. The condition monitoring or maintenance schedule can be set well if the diagnosis estimate bearing fault size accurately. In view of this, the adaptive neurofuzzy inference system (ANFIS) and dimension analysis (DA) were utilized to detect the bearing fault size. Several experiments were performed at different rotating speeds on the rotor-bearing system. Localized defects were simulated on bearing races artificially using electrode discharge machining (EDM) and the vibration responses are acquainted by accelerometer and fast Fourier techniques (FFT). With a 0.1 mm error band to fix minor bugs, a two-performance indicator evaluated the model accuracy. A comparison of the performance of models with experimental results and artificial neural network (ANN) validated the potential of the present approach. The results showed that an ANFIS performs better over DA and ANN. This contributes to detecting bearing fault effectively and accuracy improvement in the estimation of the bearing fault size.

References

1.
Jena
,
D.
,
Singh
,
M.
, and
Kumar
,
R.
,
2012
, “
Radial Ball Bearing Inner Race Defect Width Measurement Using Analytical Wavelet Transform of Acoustic and Vibration Signal
,”
Meas. Sci. Rev.
,
12
(
4
), pp.
141
148
.10.2478/v10048-012-0021-x
2.
Moustafa
,
W.
,
Cousinard
,
O.
,
Bolaers
,
F.
,
Sghir
,
K.
, and
Dron
,
J. P.
,
2016
, “
Low-Speed Bearing Fault Detection and Size Estimation Using the Instantaneous Angular Speed
,”
J. Vib. Control
,
22
(
15
), pp.
3413
3425
.10.1177/1077546314560600
3.
Kogan
,
G.
,
Bortman
,
J.
, and
Klein
,
R.
,
2015
, “
Estimation of the Spall Size in a Rolling Element Bearing
,”
Insight: Non-Destructive Test. Condition Monit.
,
57
(
8
), pp.
448
451
.10.1784/insi.2015.57.8.448
4.
Ismail
,
M. A. A.
,
Sawalhi
,
N.
, and
Pham
,
T.
, “
Quantifying Bearing Fault Severity Using Time-Synchronous Averaging Jerk Energy
,”
22nd International Congress on Sound and Vibration
,
Florence, Italy
, July
12
16
.https://www.researchgate.net/publication/281820702_Quantifying_bearing_fault_severity_using_time_synchronous_averaging_jerk_energy
5.
Wang
,
W.
,
Sawalhi
,
N.
, and
Becker
,
A.
,
2016
, “
Size Estimation for Naturally Occurring Bearing Faults Using Synchronous Averaging of Vibration Signals
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051015
.10.1115/1.4033776
6.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations, and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
.10.1016/j.ymssp.2010.09.009
7.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2019
, “
Online Diagnostics of Mechanical and Electrical Faults in Induction Motor Using Multiclass Support Vector Machine Algorithms Based on Frequency Domain Vibration and Current Signals
,”
ASME J. Risk Uncertainty Part B
,
5
(
3
), p.
031001
.10.1115/1.4043268
8.
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2016
, “
Experimental Time-Domain Vibration-Based Fault Diagnosis of Centrifugal Pumps Using Support Vector Machine
,”
ASME J. Risk Uncertainty Part B
,
3
(
4
), p.
044501
.10.1115/1.4035440
9.
Jena
,
D. P.
, and
Panigrahi
,
S. N.
,
2014
, “
Precise Measurement of Defect Width in Tapered Roller Bearing Using Vibration Signal
,”
Measurement
,
55
, pp.
39
50
.10.1016/j.measurement.2014.04.023
10.
Khanam
,
S.
,
Dutt
,
J. K.
, and
Tandon
,
N.
,
2015
, “
Impact Force Based Model for Bearing Local Fault Identification
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051002
.10.1115/1.4029988
11.
Larizza
,
F.
,
Moazen-Ahmadi
,
A.
,
Howard
,
C. Q.
, and
Grainger
,
S.
,
2019
, “
The Importance of Bearing Stiffness and Load When Estimating the Size of a Defect in a Rolling Element Bearing
,”
Struct. Health Monit.
,
18
(
5–6
), pp.
1527
1542
.10.1177/1475921718808805
12.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.10.1115/1.4026433
13.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental Based Faults Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.10.1115/1.4032525
14.
Kumbhar
,
S. G.
,
Edwin Sudhagar
,
P.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
Measurement
,
161
, p.
107846
.10.1016/j.measurement.2020.107846
15.
Kumbhar
,
S. G.
, and
Sudhagar
,
P.,E.
,
2020
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Nondestructive Eval.
,
4
(
1
), p.
011001
.10.1115/1.4047102
16.
Kumbhar
,
S. G.
, and
Edwin Sudhagar
,
P.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
Meas.
,
166
, p.
108266
.10.1016/j.measurement.2020.108266
17.
Kumbhar
,
S. G.
,
Sudhagar
,
P.,E.
, and
Desavale
,
R.
,
2020
, “
An Overview of Dynamic Modeling of Rolling-Element Bearings
,”
Noise Vib. Worldwide
,
1
, pp.
1
16
.10.1177/0957456520948279
18.
Ojha
,
V.
,
Abraham
,
A.
, and
Snášel
,
V.
,
2019
, “
Heuristic Design of Fuzzy Inference Systems: A Review of Three Decades of Research
,”
Eng. Appl. Artif. Intell.
,
85
, pp.
845
864
.10.1016/j.engappai.2019.08.010
19.
Soualhi
,
M.
,
Nguyen
,
T. P. K.
,
Soualhi
,
A.
,
Medjaher
,
K.
, and
Hemsas
,
K. E.
,
2019
, “
Health Monitoring of Bearing and Gear Faults by Using a New Health Indicator Extracted From Current Signals
,”
Measurement
,
141
, pp.
37
51
.10.1016/j.measurement.2019.03.065
20.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2020
, “
Signal Based Condition Monitoring Techniques for Fault Detection and Diagnosis of Induction Motors: A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
144
, p.
106908
.10.1016/j.ymssp.2020.106908
21.
SKF Group
,
2018
,
Roller Bearing Catalogue
,
SKF Group
,
Gothenburg, Sweden
.
22.
Singh
,
M.
, and
Kumar
,
R.
,
2013
, “
Thrust Bearing Groove Race Defect Measurement by Wavelet Decomposition of Pre-Processed Vibration Signal
,”
Measurement
,
46
(
9
), pp.
3508
3515
.10.1016/j.measurement.2013.06.044
23.
Rehab
,
I.
,
Tian
,
X.
,
Gu
,
F.
, and
Ball
,
A.
,
2014
, “
The Fault Detection and Severity Diagnosis of Rolling Element Bearings Using Modulation Signal Bispectrum
,”
11th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies
,
Manchester, UK
.
24.
Muruganatham
,
B.
,
Sanjith
,
M. A.
,
Krishnakumar
,
B.
, and
Satya Murty
,
S. A. V.
,
2013
, “
Roller Element Bearing Fault Diagnosis Using Singular Spectrum Analysis
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
150
166
.10.1016/j.ymssp.2012.08.019
25.
Al-Ghamd
,
A. M.
, and
Mba
,
D.
,
2006
, “
A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1537
1571
.10.1016/j.ymssp.2004.10.013
26.
Rad
,
H. N.
,
Jalali
,
Z.
, and
Jalalifar
,
H.
,
2015
, “
Prediction of Rock Mass Rating System Based on Continuous Functions Using Chaos–ANFIS Model
,”
Int. J. Rock Mech. Min. Sci.
,
73
, pp.
1
9
.10.1016/j.ijrmms.2014.10.004
27.
Barakat
,
S.
,
Eteiba
,
M. B.
, and
Wahba
,
W. I.
,
2014
, “
Fault Location in Underground Cables Using ANFIS Nets and Discrete Wavelet Transform
,”
J. Electr. Syst. Inf. Technol.
,
1
(
3
), pp.
198
211
.10.1016/j.jesit.2014.12.003
28.
Abdulshahed
,
A. M.
,
Longstaff
,
A. P.
, and
Fletcher
,
S.
,
2015
, “
The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools
,”
Appl. Soft Comput.
,
27
, pp.
158
168
.10.1016/j.asoc.2014.11.012
29.
Ljung
,
L.
,
2016
,
Fuzzy Logic Toolbox User's Guide
,
The Math Works
,
Natick, MA
.
You do not currently have access to this content.