Abstract

Composite materials have a myriad of applications in complex engineering systems, and multiple structural health monitoring (SHM) strategies have been developed. However, these methods are challenging due to signal attenuation and excessive noise interference in composite materials. Signal processing can capture a small difference between the input–output signals associated with the severity of the damage in composites. Thus, the research question is “can signal processing techniques reduce the required number of features and assess the randomness of fatigue damage classification in composite materials using machine learning (ML) algorithms?” To answer this question, piezo-electric signals for carbon fiber reinforced polymer (CFRP) test specimens were taken from NASA Ames prognostics data repository. A framework based on a comparative analysis of signals was developed. For the first specific aim, the effectiveness of features based on statistical condition indicators of the sensor signals were evaluated. For the second specific aim, actuator-sensor signal pair were analyzed using cross-correlation to extract two features. These features were used to train and test four supervised ML algorithms for damage classification and their performance was discussed. For the third specific aim, randomness in the dataset of fatigue damage of the specimens was assessed. Results showed that by signal processing, the requirement of features for training ML was reduced with the improvement in the performance of ML. The randomness was captured by the utilization of two specimens from the same material. This work contributes to the improvement of intelligent damage classification of composite materials, operating under complex working conditions.

References

1.
Ng
,
S. C.
,
Ismail
,
N.
,
Ali
,
A.
,
Sahari
,
B.
,
Yusof
,
J. M.
, and
Chu
,
B. W.
,
2011
, “
Non-Destructive Inspection of Multi-Layered Composite Using Ultrasonic Signal Processing
,”
Proceedings of IOP Conference Series: Materials Science and Engineering, v 17, n 1, 2011, Conference on Advanced Materials and Nanotechnology, CAMAN 2009
,
Kuala Lumpur, Malaysia
, Nov. 3–5, 2009.https://iopscience.iop.org/article/10.1088/1757-899X/17/1/012045
2.
Loutas
,
T. H.
, and
Kostopoulos
,
V.
,
2009
, “
Health Monitoring of Carbon/Carbon, Woven Reinforced Composites: Damage Assessment by Using Advanced Signal Processing Techniques—Part II: Acousto-Ultrasonics Monitoring of Damage Development
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
273
283
.10.1016/j.compscitech.2008.09.042
3.
Gao
,
C.
,
Wang
,
H.
, and
Yang
,
N.
,
2010
, “
Ultrasonic Testing System of Fiber-Reinforced Composites and Wavelet-Based Echo Signal Processing
,”
Proceedings of the ICIC 2010—third International Conference on Information and Computing
,
Wuxi, China
, June 4–6, pp.
293
296
.10.1109/ICIC.2010.169
4.
Schaal
,
C.
,
Brown
,
M.
, and
Schulz
,
K.
,
2019
, “
Experimental Investigation of Lamb Wave-Based Edge Detection Methods
,”
Proceedings of SPIE—The International Society for Optical Engineering
, Vol.
10972
, Health Monitoring of Structural and Biological Systems XIII,
Denver, CO
, Mar. 4–7, Article No. 1097223.10.1117/12.2515452
5.
Schaal
,
C.
, and
Mal
,
A.
,
2018
, “
Core-Skin Disbond Detection in a Composite Sandwich Panel Using Guided Ultrasonic Waves
,”
ASME J. Nondestruct. Eval. Diagnostics Progn. Eng. Syst.
,
1
(
1
), p. 011006.10.1115/1.4037544
6.
Souza
,
P. R.
, and
Nobrega
,
E. G. O.
,
2015
, “
Lamb Wave Based Damage Detection and Localization Using Two Ring-Shaped Arrangement of Piezo Transducers
,”
IFAC-PapersOnLine
,
48
(
21
), pp.
646
651
.10.1016/j.ifacol.2015.09.600
7.
Su
,
Z.
, and
Ye
,
L.
,
2009
,
Identification of Damage Using Lamb Waves
,
Springer-Verlag
,
Berlin
.
8.
Dafydd
,
I.
, and
Sharif Khodaei
,
Z.
,
2018
, “
Damage Severity Assessment in Composite Structures Using Ultrasonic Guided Waves With Chirp Excitation
,”
Proceedings of Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
,
Denver, CO
, Mar. 5–8.10.1117/12.2299647
9.
Su
,
C.
,
Jiang
,
M.
,
Liang
,
J.
,
Tian
,
A.
,
Sun
,
L.
,
Zhang
,
L.
,
Zhang
,
F.
, and
Sui
,
Q.
,
2020
, “
Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography
,”
Mater.
,
13
(
1
), p.
218
.10.3390/ma13010218
10.
Hua
,
J.
,
Wang
,
Z.
,
Gao
,
F.
,
Zeng
,
L.
, and
Lin
,
J.
,
2019
, “
Sparse Reconstruction Imaging of Damage for Lamb Wave Simultaneous Excitation System in Composite Laminates
,”
Meas. J. Int. Meas. Confed.
,
136
, pp.
201
211
.10.1016/j.measurement.2018.12.081
11.
Saxena
,
A.
,
Goebel
,
K.
,
Larrosa
,
C. C.
,
Janapati
,
V.
,
Roy
,
S.
, and
Chang
,
F. K.
,
2011
, “
Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials
,”
Proceedings of Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures—Proceedings of the Eighth International Workshop on Structural Health Monitoring
,
Stanford, CA
, Sept. 13–15, pp.
1283
1291
.https://www.researchgate.net/publication/259237909_Accelerated_Aging_Experiments_for_Prognostics_of_Damage_Growth_in_Composite_Materials
12.
Tiwari
,
K. A.
,
Raisutis
,
R.
, and
Samaitis
,
V.
,
2017
, “
Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures
,”
Sensors
,
17
(
12
), p.
2858
.10.3390/s17122858
13.
Diwakar
,
C. M.
,
Patil
,
N.
, and
Sunny
,
M. R.
,
2018
, “
Structural Damage Detection Using Vibration Response Through Cross-Correlation Analysis: Experimental Study
,”
AIAA J.
,
56
(
6
), pp.
2455
2465
.10.2514/1.J056626
14.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Serwadda
,
A.
,
2019
, “
Machine Learning in Crack Size Estimation of a Spur Gear Pair Using Simulated Vibration Data
,”
Mechanisms and Machine Science
,
Springer
,
The Netherlands
, pp.
175
190
.10.1007/978-3-319-99268-6_13
15.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2019
, “
Damage Classification of Composites Using Machine Learning
,”
ASME Paper No. IMECE2019-11851
.10.1115/IMECE2019-11851
16.
Liu
,
H.
,
Liu
,
S.
,
Liu
,
Z.
,
Mrad
,
N.
, and
Dong
,
H.
,
2017
, “
Prognostics of Damage Growth in Composite Materials Using Machine Learning Techniques
,”
Proceedings of the IEEE International Conference on Industrial Technology
,
Toronto, ON, Canada
, Mar. 22–25, pp.
1042
1047
.10.1109/ICIT.2017.7915505
17.
Corbetta
,
M.
,
Sbarufatti
,
C.
,
Giglio
,
M.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2018
, “
A Bayesian Framework for Fatigue Life Prediction of Composite Laminates Under Co-Existing Matrix Cracks and Delamination
,”
Compos. Struct.
,
187
, pp.
58
70
.10.1016/j.compstruct.2017.12.035
18.
Chiachío
,
M.
,
Chiachío
,
J.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2016
, “
An Energy-Based Prognostic Framework to Predict Evolution of Damage in Composite Materials
,”
Structural Health Monitoring (SHM) in Aerospace Structures
,
F.-G.
Yuan
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
447
477
.
19.
Zhang
,
C.
,
Zhang
,
Z.
,
Ji
,
H.
,
Qiu
,
J.
, and
Tao
,
C.
,
2020
, “
Mode Conversion Behavior of Guided Wave in Glass Fiber Reinforced Polymer With Fatigue Damage Accumulation
,”
Compos. Sci. Technol.
,
192
, p.
108073
.10.1016/j.compscitech.2020.108073
20.
Saxena
,
A.
,
Goebel
,
K.
,
Larrosa
,
C. C.
, and
Chang
,
F.-K.
,
CFRP Composites Data Set, NASA Ames Prognostics Data Repository
,
NASA Ames Research Center
,
Moffett Field, CA
.
21.
Naghashpour
,
A.
, and
Van Hoa
,
S.
,
2019
, “
A Technique for in-Situ Detection of Random Failure in Composite Structures Under Cyclic Loading
,”
J. Compos. Mater.
,
53
(
23
), pp.
3243
3255
.10.1177/0021998319839131
22.
Carpinteri
,
A.
,
Fernández-Canteli
,
A.
,
Fortese
,
G.
,
Muñiz-Calvente
,
M.
,
Ronchei
,
C.
,
Scorza
,
D.
, and
Vantadori
,
S.
,
2017
, “
Probabilistic Failure Assessment of Fibreglass Composites
,”
Compos. Struct.
,
160
, pp.
1163
1170
.10.1016/j.compstruct.2016.11.010
23.
Peng
,
T.
,
Saxena
,
A.
,
Goebel
,
K.
,
Xiang
,
Y.
,
Sankararaman
,
S.
, and
Liu
,
Y.
,
2013
, “
A Novel Bayesian Imaging Method for Probabilistic Delamination Detection of Composite Materials
,”
Smart Mater. Struct.
,
22
(
12
), p.
125019
.10.1088/0964-1726/22/12/125019
24.
Pinho
,
S. T.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
,
Iannucci
,
L.
, and
Robinson
,
P.
,
2005
, “
Failure Models and Criteria for FRP Under in-Plane or Three-Dimensional Stress States Including Shear Non-Linearity
,” NASA, Washington, DC, Report No.
NASA/TM-2005-213530
.https://ntrs.nasa.gov/citations/20050110223
25.
Talreja
,
R.
,
2016
, “
Multiscale Modeling of Failure in Composite Materials
,”
Proc. Indian Natl. Sci. Acad.
,
82
(
2
), pp.
173
181
.
26.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
Lamb Wave Propagation in Composite Laminates and Its Relationship With Acousto-Ultrasonics
,”
NDT E Int
,.,
26
(
2
), pp.
75
84
.10.1016/0963-8695(93)90257-U
27.
Chen
,
W.
,
Chen
,
J.
,
Cheng
,
W.
, and
Zhao
,
L.
,
2016
, “
Status Quo of Research on Impact Damage of Composites in Aircraft
,”
Key Eng. Mater.
,
719
, pp.
33
40
.10.4028/www.scientific.net/KEM.719.33
28.
Stamoulis
,
K.
,
Georgantzinos
,
S. K.
, and
Giannopoulos
,
G. I.
,
2019
, “
Damage Characteristics in Laminated Composite Structures Subjected to Low-Velocity Impact
,”
Int. J. Struct. Integr.
, 11(5), pp.
670
685
.https://www.emerald.com/insight/content/doi/10.1108/IJSI-10-2018-0063/full/html
29.
Tuo
,
H.
,
Lu
,
Z.
,
Ma
,
X.
,
Xing
,
J.
, and
Zhang
,
C.
,
2019
, “
Damage and Failure Mechanism of Thin Composite Laminates Under Low-Velocity Impact and Compression-After-Impact Loading Conditions
,”
Compos. Part B Eng.
,
163
, pp.
642
654
.10.1016/j.compositesb.2019.01.006
30.
Dhanisetty
,
V. S. V.
,
Massart
,
P. F. R.
,
Esrail
,
F.
,
Verhagen
,
W. J. C.
,
Kassapoglou
,
C.
, and
Curran
,
R.
,
2019
, “
Prediction of Damage Due to Impact for Composites on the Basis of Possible Impact Threats
,”
Int. J. Impact Eng.
,
132
, p.
103317
.10.1016/j.ijimpeng.2019.103317
31.
Tuo
,
H.
,
Lu
,
Z.
,
Ma
,
X.
,
Zhang
,
C.
, and
Chen
,
S.
,
2019
, “
An Experimental and Numerical Investigation on Low-Velocity Impact Damage and Compression-After-Impact Behavior of Composite Laminates
,”
Compos. Part B Eng.
,
167
, pp.
329
341
.10.1016/j.compositesb.2018.12.043
32.
Tie
,
Y.
,
Zhang
,
Q.
,
Hou
,
Y.
, and
Li
,
C.
,
2020
, “
Impact Damage Assessment in Orthotropic CFRP Laminates Using Nonlinear Lamb Wave: Experimental and Numerical Investigations
,”
Compos. Struct.
, 236, Article No. 111869.10.1016/j.compstruct.2020.111869
33.
Molchanov
,
D.
,
Safin
,
A.
, and
Luhyna
,
N.
,
2016
, “
Damage Monitoring of Aircraft Structures Made of Composite Materials Using Wavelet Transforms
,”
IOP Conference Series: Materials Science and Engineering. Proceedings of fourth International Conference on Advanced Composites and Materials Technologies for Arduous Applications (ACMTAA)
,
Wrexham, UK
, Nov. 5–6, 2015, Article No. 012016.https://iopscience.iop.org/article/10.1088/1757-899X/153/1/012016
34.
Rheinfurth
,
M.
,
Kosmann
,
N.
,
Sauer
,
D.
,
Busse
,
G.
, and
Schulte
,
K.
,
2012
, “
Composites: Part a Lamb Waves for Non-Contact Fatigue State Evaluation of Composites Under Various Mechanical Loading Conditions
,”
Compos. Part A
,
43
(
8
), pp.
1203
1211
.10.1016/j.compositesa.2012.03.021
35.
Cot
,
L. D.
,
Gomez
,
C.
,
Gamboa
,
F.
,
Kopsaftopoulos
,
F.
, and
Chang
,
F. K.
,
2016
, “
SHM-Based Fatigue Damage Prognostics in Composite Structures
,”
Proceedings of the Eighth European Workshop on Structural Health Monitoring (EWSHM)
,
Bilbao, Spain
, July 5–8, pp.
800
809
.https://www.semanticscholar.org/paper/SHM-based-fatigue-damage-prognostics-in-composite-Cot-Gomez/98960591ddac4cd0f30beb9ec93b5ff7e5719f77
36.
Alves
,
D. S.
,
Daniel
,
G. B.
,
Castro
,
H. F. D.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.10.1016/j.mechmachtheory.2020.103835
37.
Eleftheroglou
,
N.
,
Zarouchas
,
D.
,
Loutas
,
T.
,
Alderliesten
,
R.
, and
Benedictus
,
R.
,
2018
, “
Structural Health Monitoring Data Fusion for in-Situ Life Prognosis of Composite Structures
,”
Reliab. Eng. Syst. Saf.
,
178
, pp.
40
54
.10.1016/j.ress.2018.04.031
38.
Kudela
,
P.
,
Radzienski
,
M.
, and
Ostachowicz
,
W.
,
2018
, “
Impact Induced damage assessment by Means of Lamb Wave Image Processing
,”
Mech. Syst. Signal Process.
,
102
, pp.
23
36
.10.1016/j.ymssp.2017.09.020
39.
Huang
,
L.
,
Zeng
,
L.
,
Lin
,
J.
, and
Luo
,
Z.
,
2018
, “
An Improved Time Reversal Method for Diagnostics of Composite Plates Using Lamb Waves
,”
Compos. Struct.
,
190
, pp.
10
19
.10.1016/j.compstruct.2018.01.096
40.
De Luca
,
A.
,
Caputo
,
F.
,
Sharif Khodaei
,
Z.
, and
Aliabadi
,
M. H.
,
2018
, “
Damage Characterization of Composite Plates Under Low Velocity Impact Using Ultrasonic Guided Waves
,”
Compos. Part B Eng.
,
138
, pp.
168
180
.10.1016/j.compositesb.2017.11.042
41.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Detection of Composite Materials Using Data Fusion With Deep Neural Networks
,”
ASME Paper No. GT2020-15097
.https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/5343/application/47508
42.
Sun
,
S.
,
Li
,
S.
,
Lin
,
L.
,
Yuan
,
Y.
, and
Li
,
M.
,
2019
, “
A Novel Signal Processing Method Based on Cross-Correlation and Interpolation for ToF Measurement
,”
Proceedings of the IEEE Fourth International Conference on Signal and Image Processing (ICSIP)
,
IEEE
,
Wuxi, China
, July 19–21, pp.
664
668
.10.1109/SIPROCESS.2019.8868700
43.
McAllister
,
B. T.
,
Parker
,
S. R.
,
Ivanov
,
E. N.
, and
Tobar
,
M. E.
,
2019
, “
Cross-Correlation Signal Processing for Axion and WISP Dark Matter Searches
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
66
(
1
), pp.
236
243
.10.1109/TUFFC.2018.2881754
44.
Ahmad
,
M. W.
,
Mourshed
,
M.
, and
Rezgui
,
Y.
,
2017
, “
Trees versus Neurons: Comparison Between Random Forest and ANN for High-Resolution Prediction of Building Energy Consumption
,”
Energy Build.
,
147
, pp.
77
89
.10.1016/j.enbuild.2017.04.038
45.
Pastor-López
,
I.
,
Santos
,
I.
,
Santamaría-Ibirika
,
A.
,
Salazar
,
M.
,
De-La-Peña-Sordo
,
J.
, and
Bringas
,
P. G.
,
2012
, “
Machine-Learning-Based Surface Defect Detection and Categorisation in High-Precision Foundry
,”
Proceedings of the 2012 Seventh IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Singapore
, July 18–20, pp.
1359
1364
.10.1109/ICIEA.2012.6360934
46.
Santulli
,
C.
,
2019
, “
Mechanical and Impact Damage Analysis on Carbon/Natural Fibers Hybrid Composites: A Review
,”
Materials
,
12
(
3
), p.
517
.10.3390/ma12030517
47.
Torkamani
,
S.
,
Roy
,
S.
,
Barkey
,
M. E.
,
Sazonov
,
E.
,
Burkett
,
S.
, and
Kotru
,
S.
,
2014
, “
A Novel Damage Index for Damage Identification Using Guided Waves With Application in Laminated Composites
,”
Smart Mater. Struct.
,
23
(
9
), p.
095015
.10.1088/0964-1726/23/9/095015
48.
Dafydd
,
I.
, and
Sharif Khodaei
,
Z.
,
2019
, “
Analysis of Barely Visible Impact Damage Severity With Ultrasonic Guided Lamb Waves
,”
Struct. Heal. Monit.
, 19(4), pp.
1104
1122
.10.1177/1475921719878850
You do not currently have access to this content.