Abstract

An essential step in the safe design of systems is choosing the system configuration that will maximize the overall availability of the system and minimize its overall cost. The main objective of this paper is to propose an optimization method of multistate system availability in the presence of both aleatory and epistemic uncertainties, to choose the best configuration for the system in terms of availability, cost, and imprecision. The problem is formulated as follows: let us consider several configurations of a system, with each configuration consisting of components with different working states, and imprecise failure and repair rates provided in the form of intervals. The aim is to find the best configuration regarding the system's imprecise availability, cost, and imprecision. First, the imprecise steady availability of each configuration is computed by using an original method based on Markovian approaches combined with interval contraction techniques. Then an objective function incorporating cost, the lower and upper bounds of availability, and imprecision is defined and computed to provide the best configuration. To illustrate the proposed method, a use case is discussed.

References

1.
Levitin
,
G.
,
2005
,
The Universal Generating Function in Reliability Analysis and Optimization
,
Springer
, London.
2.
Patil
,
S.
,
Bewoor
,
A.
, and
Patil
,
R.
,
2021
, “
Availability Analysis of a Steam Boiler in Textile Process Industries Using Failure and Repair Data: A Case Study
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
7
(
2
), p. 021002. 10.1115/1.4049007
3.
Mihova
,
M.
, and
Maksimova
,
N.
,
2011
, “
Estimation of Minimal Path Vectors of Multi State Two Terminal Networks With Cycles Control
,”
Mathematica Balkanica
,
25
(
4
), pp.
437
447
.https://www.researchgate.net/publication/260797585_Estimation_of_minimal_path_vectors_of_multi_state_two_terminal_networks_with_cycles_control
4.
Billinton
,
R.
, and
Wang
,
P.
,
1999
, “
Teaching Distribution System Reliability Evaluation Using Monte Carlo Simulation
,”
IEEE Trans. Power Syst.
,
14
(
2
), pp.
397
403
.10.1109/59.761856
5.
Troffaes
,
M.
,
Gledhill
,
J.
,
Škulj
,
D.
, and
Blake
,
S.
,
2015
,
Using Imprecise Continuous Time Markov Chains for Assessing the Reliability of Power Networks With Common Cause Failure and Non-Immediate Repair
,
Sipta
, Maharashtra.
6.
Sallak
,
M.
,
Schön
,
W.
, and
Aguirre
,
F.
,
2013
, “
Reliability Assessment for Multi-State Systems Under Uncertainties Based on the Dempster–Shafer Theory
,”
IIE Trans.
,
45
(
9
), pp.
995
1007
.10.1080/0740817X.2012.706378
7.
Aguirre
,
F.
,
Destercke
,
S.
,
Dubois
,
D.
,
Sallak
,
M.
, and
Jacob
,
C.
,
2014
, “
Inclusion–Exclusion Principle for Belief Functions
,”
Int. J. Approx. Reason.
,
55
(
8
), pp.
1708
1727
.10.1016/j.ijar.2014.04.018
8.
Zhang
,
H.
, and
Beer
,
M.
,
2012
, “
Interval Quasi-Monte Carlo Method for Reliability Assessment With Imprecise Probability
,” 5th International Conference on Reliable Engineering Computing (
REC 2012
), Brno, Czech Republic, June
13
15
.https://rec2012.fce.vutbr.cz/documents/papers/zhang.pdf
9.
Li
,
C.-y.
,
Chen
,
X.
,
Yi
,
X.-S.
, and
Tao
,
J.-y.
,
2011
, “
Interval-Valued Reliability Analysis of Multi-State Systems
,”
IEEE Trans. Reliab.
,
60
(
1
), pp.
323
330
.10.1109/TR.2010.2103670
10.
Destercke
,
S.
, and
Sallak
,
M.
,
2013
, “
An Extension of Universal Generating Function in Multi-State Systems Considering Epistemic Uncertainties
,”
IEEE Trans. Reliab.
,
62
(
2
), pp.
504
514
.10.1109/TR.2013.2259206
11.
Hu
,
Z.
, and
Du
,
X.
,
2019
, “
Reliability Methods for Bimodal Distribution With First-Order Approximation
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
5
(
1
), p. 011005.10.1115/1.4040000
12.
Berdai
,
M.
,
Tahan
,
A.
, and
Gagnon
,
M.
,
2017
, “
Imprecise Probabilities in Fatigue Reliability Assessment of Hydraulic Turbines
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
3
(
1
), p. 011006.10.1115/1.4034690
13.
De Cooman
,
G.
,
Hermans
,
F.
, and
Quaeghebeur
,
E.
,
2009
, “
Imprecise Markov Chains and Their Limit Behavior
,”
Probab. Eng. Inf. Sci.
,
23
(
4
), pp.
597
635
.10.1017/S0269964809990039
14.
Škulj
,
D.
,
2015
, “
Efficient Computation of the Bounds of Continuous Time Imprecise Markov Chains
,”
Appl. Math. Comput.
,
250
, pp.
165
180
.10.1016/j.amc.2014.10.092
15.
Škulj
,
D.
,
2009
, “
Discrete Time Markov Chains With Interval Probabilities
,”
Int. J. Approx. Reason.
,
50
(
8
), pp.
1314
1329
.10.1016/j.ijar.2009.06.007
16.
Akrouche
,
J.
,
Sallak
,
M.
,
Chatelet
,
E.
,
Abdallah
,
F.
, and
Chehade
,
H. H.
,
2017
,
A Contribution to the Evaluation of Imprecise Availability of Complex Systems Using Markov Models
,
Rhodes Island
,
Greece
, pp.
456
466
.
17.
Akrouche
,
J.
,
Sallak
,
M.
,
Chatelet
,
E.
,
Abdallah
,
F.
, and
Chehade
,
H. H.
,
2018
, “
New Method for Availability Computing of Complex Systems Using Imprecise Markov Models
,”
10th IMA International Conference on Modeling in Industrial Maintenance and Reliability
, MIMAR, 2018, Manchester, UK, June
13
15
.10.19124/ima.2018.001.02
18.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
110
,
Society for Industrial and Applied Mathematics (SIAM)
, Philadelphia, PA.
19.
Jaulin
,
L.
,
2001
,
Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics
,
Springer Science & Business Media
, London.
20.
Dne
,
N.
,
2007
, “
Interval Analysis - a Powerful Trend in Numerical Analysis
,”
International Conference “Trends and Challenges in Applied Mathematics” ICTCAM 2007
, Bucharest, Romania, June
20
23
.
21.
Lhomme
,
O.
,
1993
,
Consistency Techniques for Numeric Csps
, 93,
IJCAI
, pp.
232
238
.
22.
Kuo
,
W.
,
Prasad
,
V. R.
,
Tillman
,
F. A.
, and
Hwang
,
C.-L.
,
2001
,
Optimal Reliability Design: Fundamentals and Applications
,
Cambridge University Press
, Cambridge, UK.
23.
Grunske
,
L.
,
Lindsay
,
P.
,
Bondarev
,
E.
,
Papadopoulos
,
Y.
, and
Parker
,
D.
,
2007
, “
An Outline of an Architecture-Based Method for Optimizing Dependability Attributes of Software-Intensive Systems
,”
Architecting Dependable Systems IV
,
Springer
, Berlin/Heidelberg, pp.
188
209
.10.1007/978-3-540-74035-3_9
24.
Kuo
,
W.
, and
Prasad
,
V. R.
,
2000
, “
An Annotated Overview of System-Reliability Optimization
,”
IEEE Trans. Reliab.
,
49
(
2
), pp.
176
187
.10.1109/24.877336
25.
Yu
,
H.
,
Yalaoui
,
F.
,
Châtelet
,
Ė.
, and
Chu
,
C.
,
2007
, “
Optimal Design of a Maintainable Cold-Standby System
,”
Reliab. Eng. Syst. Saf.
,
92
(
1
), pp.
85
91
.10.1016/j.ress.2005.11.001
26.
Maatouk
,
I.
,
Chatelet
,
E.
, and
Chebbo
,
N.
,
2012
, “
Cost Minimization of Maintained Multi-State System Using Optimal Load Distribution
,”
2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
, Chengdu, China, June 15–18, pp.
1005
1009
.10.1109/ICQR2MSE.2012.6246394
27.
Yu
,
H.
,
Chu
,
C.
, and
Châtelet
,
É.
,
2014
, “
Availability Optimization of a Redundant System Through Dependency Modeling
,”
Appl. Math. Model.
,
38
(
19–20
), pp.
4574
4585
.10.1016/j.apm.2014.03.006
28.
Andersson
,
R.
,
Bargalló
,
E.
, and
Nordt
,
A.
,
2019
, “
A Functional Protection Method for Availability and Cost Risk Management of Complex Research Facilities
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
5
(
3
), p. 031002.10.1115/1.4043409
29.
Xia
,
T.
, and
Li
,
M.
,
2019
, “
A Sequential Approach for Robust Multidisciplinary Design Optimization Under Mixed Interval and Probabilistic Uncertainties
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
5
(
2
), p. 020905.10.1115/1.4042834
30.
Suksuwan
,
A.
, and
Spence
,
S. M.
,
2018
, “
Efficient Approach to System-Level Reliability-Based Design Optimization of Large-Scale Uncertain and Dynamic Wind-Excited Systems
,”
ASCE-ASME J. Risk Uncert. Eng. Syst. Part A: Civ. Eng.
,
4
(
2
), p.
04018013
.10.1061/AJRUA6.0000960
31.
Ye
,
Y.
,
Grossmann
,
I. E.
,
Pinto
,
J. M.
, and
Ramaswamy
,
S.
,
2018
, “
Markov Chain Minlp Model for Reliability Optimization of System Design and Maintenance
,”
Computer Aided Chemical Engineering
, 44,
Elsevier
, Amsterdam, The Netherlands, pp.
1483
1488
.
32.
Gutjahr
,
W. J.
,
2000
, “
Software Dependability Evaluation Based on Markov Usage Models
,”
Performance Evaluation
,
40
(
4
), pp.
199
222
.10.1016/S0166-5316(99)00052-8
33.
Callou
,
G.
,
Ferreira
,
J.
,
Maciel
,
P.
,
Tutsch
,
D.
, and
Souza
,
R.
,
2014
, “
An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost
,”
Energies
,
7
(
1
), pp.
238
277
.10.3390/en7010238
34.
Limbourg
,
P.
,
2008
,
Dependability Modelling Under Uncertainty
,
Springer
, Berlin/Heidelberg.
35.
Beck
,
A. T.
, and
de Santana Gomes
,
W. J.
,
2012
, “
A Comparison of Deterministic, Reliability-Based and Risk-Based Structural Optimization Under Uncertainty
,”
Probab. Eng. Mech.
,
28
, pp.
18
29
.10.1016/j.probengmech.2011.08.007
36.
Deb
,
K.
,
Gupta
,
S.
,
Daum
,
D.
,
Branke
,
J.
,
Mall
,
A. K.
, and
Padmanabhan
,
D.
,
2009
, “
Reliability-Based Optimization Using Evolutionary Algorithms
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
1054
1074
.10.1109/TEVC.2009.2014361
37.
Bi
,
S.
,
Beer
,
M.
,
Zhang
,
J.
,
Yang
,
L.
, and
He
,
K.
,
2021
, “
Optimization or Bayesian Strategy? performance of the Bhattacharyya Distance in Different Algorithms of Stochastic Model Updating
,”
ASCE-ASME J. Risk Uncert. Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
020903
.10.1115/1.4050168
38.
Privault
,
N.
,
2013
, “
Understanding Markov Chains
,”
Examples and Applications
,
Publisher Springer-Verlag
,
Singapore
.
You do not currently have access to this content.