Abstract

The use of neutron noise analysis in pressurized water reactors to detect and diagnose degradation represents the practice of pro-active structural health monitoring for reactor vessel internals. Recent enhancements to this remote condition monitoring and diagnostic computational framework quantify the sensitivity of the structural dynamics to different degradation scenarios. This methodology leverages benchmarked computational structural mechanics models and machine learning methods to enhance the interpretability of neutron noise measurement results. The novelty of the methodology lies not in the particular technologies and algorithms but our amalgamation into a holistic computational framework for structural health monitoring. Recent experience revealed the successful deployment of this methodology to pro-actively diagnose different degradation scenarios, thus enabling prognostic asset management for reactor structures.

References

1.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2021
, “
Digital Twin: Generalization, Characterization and Implementation
,”
Decis. Support Syst.
,
145
, p.
113524
.10.1016/j.dss.2021.113524
2.
ASME
,
2017
, “
Operation and Maintenance of Nuclear Power Plants
,”
ASME
Paper No. OM-2017.https://www.asme.org/codesstandards/find-codes-standards/om-operation-maintenance-nuclear-power-plants/2017/drmenabled-pdf
3.
Damiano
,
B.
, and
Kryter
,
R. C.
,
1990
, Current Applications of Vibration Monitoring and Neutron Noise Analysis, Detection and Analysis of Structural Degradation of Reactor Vessel Internals From Operational Aging,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No.
NUREG/CR-5479 ORNL/TM-11398
.https://www.nrc.gov/docs/ML0403/ML040350086.pdf
4.
Trenty
,
A.
,
1995
, “
Operational Feedback on Internal Structure Vibration in 54 French PWRs During 300 Fuel Cycles
,”
Progress Nucl. Energy
,
29
(
3–4
), pp.
347
356
.10.1016/0149-1970(95)00017-E
5.
Por
,
G.
,
1998
,
Reactor Noise Analysis Applications and Systems in WWER-440 and WWER-1000 Type PWRs
,
Lecture Material for IAEA Training Course
,
Slovakai
.
6.
Glöckler
,
O.
, and
Tulett
,
M. V.
,
1995
, “
Application of Reactor Noise Analysis in the Candu Reactors of Ontario Hydro
,”
Prog. Nucl. Energy
,
29
(
3–4
), pp.
171
191
.10.1016/0149-1970(95)00006-6
7.
Zylbersztejn
,
F.
,
Filliatre
,
P.
, and
Jammes
,
C.
,
2013
, “
Analysis of the Experimental Neutron Noise From the PHENIX Reactor
,”
Ann. Nucl. Energy
,
60
, pp.
106
114
.10.1016/j.anucene.2013.04.009
8.
Du
,
Z.
,
Sheng
,
D.-Y.
,
Seidl
,
M.
, and
Macián-Juan
,
R.
, Investigations of Neutron Noise Induced by Transient Cross Flow in a PWR Reactor Core,
American Nuclear Society
,
NURETH
, LaGrange Park, IL.https://www.ans.org/pubs/proceedings/article-46422/
9.
Vidal-Ferràndiz
,
A.
,
Carreño
,
A.
,
Ginestar
,
D.
,
Demazière
,
C.
, and
Verdú
,
G.
,
2020
, “
Neutronic Simulation of Fuel Assembly Vibrations in a Nuclear Reactor
,”
Nucl. Sci. Eng.
,
194
(
11
), pp.
1067
1078
.10.1080/00295639.2020.1756617
10.
Bernard
,
P.
,
Messainguiral
,
C.
,
Carre
,
J. C.
,
Epstein
,
A.
,
Assedo
,
R.
, and
Castello
,
G.
,
1982
, “
Quantitative Monitoring and Diagnosis of French PWRs' Internal Structures Vibrations by Excore Neutron Noise and Accelerometers Analysis
,”
Prog. Nucl. Energy
,
9
, pp.
465
495
.10.1016/0149-1970(82)90068-3
11.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data, Analysis and Measurement Procedures
,
Wiley
,
Hoboken, NJ
.
12.
Blevins
,
R. D.
,
2001
,
Flow-Induced Vibration
,
Kreiger
,
Malabar
, FL, p.
2
.
13.
Bonness
,
W. K.
,
Fahnline
,
J. B.
, and
Jenkins
,
D. M.
,
2003
, “
Circumferential Wavenumber Decomposition of Experimental Data From Structures Containing Circular Symmetry
,”
International Modal Analysis Conference IMAC-XXI, IMAC, Kissimmee
, FL.
14.
Fritz
,
R. J.
,
1972
, “
The Effect of Liquids on the Dynamic Motions of Immersed Solids
,”
Trans. ASME J. Eng. Ind.
,
94
(
1
), pp.
167
173
.10.1115/1.3428107
15.
Snyder
,
M. D.
,
2004
, “
Method for Hydrodynamic Coupling of Concentric Cylindrical Shells and Beams
,”
International ANSYS Conference
, Canonsburg, PA.
16.
Palamara
,
M. J.
,
Smith
,
S. D.
,
Walker
,
A. P.
,
Basel
,
R. A.
, and
Meyer
,
G. A.
,
2015
, “
Development of an Advanced PWR Reactor Internals System Finite Element Model for Flow-Induced Vibration Analyses
,”
ASME
Paper No. PVP2015-45278.https://www.semanticscholar.org/paper/Method-for-Hydrodynamic-Coupling-of-Concentric-and-Snyder-Westinghouse/10d77d21430f3f1c6372d6b1ff44d93287811031
17.
Bunting
,
G.
,
Miller
,
S. T.
,
Walsh
,
T. F.
,
Dohrmann
,
C. R.
, and
Aquino
,
W.
,
2021
, “
Novel Strategies for Modal-Based Structural Material Identification
,”
Mech. Syst. Signal Process.
,
149
, p.
107295
.10.1016/j.ymssp.2020.107295
18.
Banyay
,
G. A.
,
Kelley
,
M. H.
,
McKinley
,
J. K.
,
Palamara
,
M. J.
,
Sidener
,
S. E.
, and
Worrell
,
C. L.
,
2019
, “
Predictive Modeling of Baffle-Former Bolt Failures in Pressurized Water Reactors
,”
Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Metals & Materials Series The Minerals
,
Springer
,
Portland, OR
, pp.
1573
1588
.10.1007/978-3-319-68454-3_29
19.
Wilson
,
B. M.
,
McKinley
,
J. K.
, and
Fici
,
M. R.
,
2019
,
Core Barrel Weld Cracking Issue Safety Significance Evaluation
,
Westinghouse Electric Company
,
Cranberry Township, PA
.
20.
Banyay
,
G. A.
,
Shields
,
M. D.
, and
Brigham
,
J. C.
,
2019
, “
Efficient Global Sensitivity Analysis for Flow-Induced Vibration of a Nuclear Reactor Assembly Using Kriging Surrogates
,”
Nucl. Eng. Des.
,
341
, pp.
1
15
.10.1016/j.nucengdes.2018.10.013
21.
EPRI
,
2021
, Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines,
EPRI
, Palo Alto, CA, Report No.
s.l MRP-227
, Revision 2.https://www.epri.com/research/products/1022863
22.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
23.
Allemang
,
R. J.
, and
Phillips
,
A. W.
,
2014
, “
Un-Weighted and Weighted Versions of the Modal Assurance Criterion (MAC) for Evaluation of Modal Vector Contamination
,”
Conference Proceedings of the Society for Experimental, Mechanics Series
,
Springer
, Berlin.
24.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
, Cambridge, MA.
25.
Most
,
T.
, and
Will
,
J.
,
2008
,
Metamodel of Optimal Prognosis - An Automatic Approach for Variable Reduction and Optimal Metamodel Selection
,
Weimar Optimization and Stochastic Days
, Dynardo, Weimar, Germany.https://www.dynardo.de/fileadmin/Material_Dynardo/bibliothek/WOST_5.0/WOST_5_Paper_Most.pdf
26.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
An Efficient Modularized Sample-Based Method to Estimate the First-Order
,”
Sobol' Index. Reliab. Eng. Syst. Saf.
,
153
, pp.
110
121
.10.1016/j.ress.2016.04.012
27.
Brigham
,
K.
,
Zappala
,
D.
,
Crabtree
,
D.
, and
Donaghy‐Spargo
,
C.
,
2020
, “
Simplified Automatic Fault Detection in Wind Turbine Induction Generators
,”
Wind Energy
,
23
(
4
), pp.
1135
1144
.10.1002/we.2478
28.
Lederman
,
G.
,
Chen
,
S.
,
Garrett
,
J. H.
,
Kovačević
,
J.
,
Noh
,
H. Y.
, and
Bielak
,
J.
,
2017
, “
Track Monitoring From the Dynamic Response of a Passing Train: A Sparse Approach
,”
Mech. Syst. Signal Process.
,
90
, pp.
141
153
.10.1016/j.ymssp.2016.12.009
29.
Agarwal
,
V.
,
Lybeck
,
N.
,
Pham
,
B. T.
,
Rusaw
,
R.
, and
Bickford
,
R.
,
2013
, “
Online Monitoring of Plant Assets in the Nuclear Industry
,”
Annual Conference of the Prognostics and Health Management Society
, Vol. 5, New Orleans, LA, Idaho National Laboratory, Idaho Falls, ID.10.36001/phmconf.2013.v5i1.2251
30.
Yang
,
J.
,
2014
, “
Plant Event Signatures on Neutron Noise Data
,”
ASME
Paper No. ICONE22-31167.10.1115/ICONE22-31167
31.
Bickford
,
R. L.
,
2005
, “
Surveillance System and Method Having Parameter Estimation and Operating Mode Partitioning
,” Intellectual Assets LLC, Durham, NC, U.S. Patent No.
6,898,469 B2
.https://portal.unifiedpatents.com/patents/patent/US-6898469-B2
32.
Pedregosa
,
F.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
33.
Morgan
,
M.
,
Granger
,
H. M.
, and
Small
,
M.
,
1992
,
Uncertainty: A Guide to Dealing With Uncertainty in Quantitative Risk and Policy Analysis
,
Cambridge University Press
,
Cambridge, UK
.
34.
Pázsit
,
I.
,
Montalvo
,
C.
,
Nylén
,
H.
,
Andersson
,
T.
,
Hernández-Solís
,
A.
, and
Bernitt Cartemo
,
P.
,
2016
, “
Developments in Core-Barrel Motion Monitoring and Applications to the Ringhals PWR Units
,”
Nucl. Sci. Eng.
,
182
(
2
), pp.
213
227
.10.13182/NSE15-14
35.
Worden
,
K.
,
Cross
,
E. J.
,
Barthorpe
,
R. J.
,
Wagg
,
D. J.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncert Eng. Sys. Part B Mech. Eng.
,
6
(
3
), p.
030902
.10.1115/1.4046740
36.
Li
,
S.
, and
Pozzi
,
M.
,
2019
, “
What Makes Long‐Term Monitoring Convenient? A Parametric Analysis of Value of Information in Infrastructure Maintenance
,”
Struct. Control Health Monit.
,
26
(
5
), p. e2329.10.1002/stc.2329
37.
ASME
,
2020
, Standard for Verification and Validation in Computational Solid Mechanics,
ASME,
New York
, ASME Standard No.
V&V 10–2019
.https://www.asme.org/codesstandards/find-codes-standards/v-v-10-standard-verification-validation-computational-solidmechanics
38.
Lin
,
L.
, and
Dinh
,
N.
,
2020
, “
Predictive Capability Maturity
,”
ASME J. Verif. Valid. Uncert.
,
5
(
3
), p.
031001
.10.1115/1.4048465
You do not currently have access to this content.