Abstract

In this study, an attempt is made to assess the feasibility of several machine learning techniques for forecasting the energetic performance of a hybrid renewable energy unit consisting of an earth-air heat exchanger (EAX) and a building-integrated photovoltaic thermal (BPV/T) unit. The unit provides preheating/precooling of outdoor air in cold/warm days and generates electricity throughout the year. The employed methods are artificial neural network (ANN), support vector machine network (SVMN), and fuzzy network (FN). These techniques are employed to develop a relationship between the input and output parameters of the unit. The annual total energy output of the unit is taken as the essential output of the unit, while the input parameters were the length, depth, and width of the BPV/T unit, the air mass flowrate, and length and diameter of the EAX unit. The results indicated that all the methods are successful at the prediction of the annual total energy output of the unit; however, the SVMN outperforms other methods in the test phases where the non-trained data sets are examined. Finally, it is demonstrated that the SVMN model can successfully predict the output for any arbitrary combination of the inputs within the training intervals.

References

1.
Varro
,
L.
World Energy Investment, International Energy Agency
,
2018
, https://www.iea.org/reports/world-energy-investment-2018
2.
Cao
,
X.
,
Dai
,
X.
, and
Liu
,
J.
,
2016
, “
Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings During the Past Decade
,”
Energy Build.
,
128
(
9
), pp.
198
213
. 10.1016/j.enbuild.2016.06.089
3.
Khanmohammadi
,
S.
, and
Shahsavar
,
A.
,
2018
, “
Energy Analysis and Multi-objective Optimization of a Novel Exhaust Air Heat Recovery System Consisting of an Air-Based Building Integrated Photovoltaic/Thermal System and a Thermal Wheel
,”
Energy Convers. Manage.
,
172
(
9
), pp.
595
610
. 10.1016/j.enconman.2018.07.057
4.
Shahsavar
,
A.
, and
Ameri
,
M.
,
2010
, “
Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector
,”
Sol. Energy
,
84
(
11
), pp.
1938
1958
. 10.1016/j.solener.2010.07.010
5.
Shahsavar
,
A.
,
Salmanzadeh
,
M.
,
Ameri
,
M.
, and
Talebizadeh
,
P.
,
2011
, “
Energy Saving in Buildings by Using the Exhaust and Ventilation Air for Cooling of Photovoltaic Panels
,”
Energy Build.
,
43
(
9
), pp.
2219
2226
. 10.1016/j.enbuild.2011.05.003
6.
Shahsavar
,
A.
, and
Gholampour
,
M. A. M.
,
2012
, “
Energy and Exergy Analysis of a Photovoltaic-Thermal (PV/T) Collector With Natural Air Flow
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011014
. 10.1115/1.4005250
7.
Ameri
,
M.
,
Mahmoudabadi
,
M. M.
, and
Shahsavar
,
A.
,
2012
, “
An Experimental Study on a PV/T Air Collector With Direct Coupling of Fans and Panels
,”
Energy Sources, Part A
,
34
(
10
), pp.
929
947
. 10.1080/15567031003735238
8.
Shahsavar
,
A.
,
Talebizadeh
,
P.
, and
Tabaei
,
H.
,
2013
, “
Optimization With Genetic Algorithm of a PV/T Air Collector With Natural Air Flow and a Case Study
,”
J. Renewable Sustainable Energy
,
5
(
2
), p.
023118
. 10.1063/1.4798312
9.
Khaki
,
M.
,
Shahsavar
,
A.
,
Khanmohammadi
,
S.
, and
Salmanzadeh
,
M.
,
2017
, “
Energy and Exergy Analysis and Multi-objective Optimization of an Air Based Building Integrated Photovoltaic/Thermal (BIPV/T) System
,”
Sol. Energy
,
158
(
12
), pp.
380
395
. 10.1016/j.solener.2017.09.056
10.
Khaki
,
M.
,
Shahsavar
,
A.
, and
Khanmohammadi
,
S.
,
2018
, “
Scenario-Based Multi-objective Optimization of an Air Based Building Integrated Photovoltaic/Thermal (BIPV/T) System
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011003
. 10.1115/1.4038050
11.
Shahsavar
,
A.
, and
Rajabi
,
Y.
,
2018
, “
Exergoeconomic and Enviroeconomic Study of an Air Based Building Integrated Photovoltaic/Thermal (BIPV/T) System
,”
Energy
,
144
(
2
), pp.
877
886
. 10.1016/j.energy.2017.12.056
12.
Shahsavar
,
A.
,
Khanmohammadi
,
S.
,
Khaki
,
M.
, and
Salmanzadeh
,
M.
,
2018
, “
Performance Assessment of an Innovative Exhaust Air Energy Recovery System Based on the PV/T-Assisted Thermal Wheel
,”
Energy
,
162
(
11
), pp.
682
696
. 10.1016/j.energy.2018.08.044
13.
Shahsavar
,
A.
, and
Khanmohammadi
,
S.
,
2018
, “
Feasibility of a Hybrid BIPV/T and Thermal Wheel System for Exhaust Air Heat Recovery: Energy and Exergy Assessment and Multi-objective Optimization
,”
Appl. Therm. Eng.
,
146
(
1
), pp.
104
122
. 10.1016/j.applthermaleng.2018.09.101
14.
Piratheepan
,
M.
, and
Anderson
,
T. N.
,
2017
, “
Performance of a Building Integrated Photovoltaic/Thermal Concentrator for Facade Applications
,”
Sol. Energy
,
153
(
9
), pp.
562
573
. 10.1016/j.solener.2017.06.006
15.
Huide
,
F.
,
Xuxin
,
Z.
,
Lei
,
M.
,
Tao
,
Z.
,
Qixing
,
W.
, and
Hongyuan
,
S.
,
2017
, “
A Comparative Study on Three Types of Solar Utilization Technologies for Buildings: Photovoltaic, Solar Thermal and Hybrid Photovoltaic/Thermal Systems
,”
Energy Convers. Manage.
,
140
(
5
), pp.
1
13
. 10.1016/j.enconman.2017.02.059
16.
Athienitis
,
A. K.
,
Barone
,
G.
,
Buonomano
,
A.
, and
Palombo
,
A.
,
2018
, “
Assessing Active and Passive Effects of Façade Building Integrated Photovoltaics/Thermal Systems: Dynamic Modelling and Simulation
,”
Appl. Energy
,
209
(
1
), pp.
355
382
. 10.1016/j.apenergy.2017.09.039
17.
Shortall
,
R.
,
Davidsdottir
,
B.
, and
Axelsson
,
G.
,
2015
, “
Geothermal Energy for Sustainable Development: A Review of Sustainability Impacts and Assessment Frameworks
,”
Renewable Sustainable Energy Rev.
,
44
(
4
), pp.
391
406
. 10.1016/j.rser.2014.12.020
18.
Li
,
H.
,
Ni
,
L.
,
Liu
,
G.
,
Zhao
,
Z.
, and
Yao
,
Y.
,
2019
, “
Feasibility Study on Applications of an Earth-Air Heat Exchanger (EAHE) for Preheating Fresh air in Severe Cold Regions
,”
Renewable Energy
,
133
(
4
), pp.
1268
1284
. 10.1016/j.renene.2018.09.012
19.
Lund
,
J. W.
,
Freeston
,
D. H.
, and
Boyd
,
T. L.
,
2011
, “
Direct Utilization of Geothermal Energy 2010 Worldwide Review
,”
Geothermics
,
40
(
3
), pp.
159
180
. 10.1016/j.geothermics.2011.07.004
20.
Barbier
,
E.
,
1997
, “
Nature and Technology of Geothermal Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
1
(
1–2
), pp.
1
69
. 10.1016/S1364-0321(97)00001-4
21.
Zhao
,
Y.
,
Li
,
R.
,
Ji
,
C.
,
Huan
,
C.
,
Zhang
,
B.
, and
liu
,
L.
,
2019
, “
Parametric Study and Design of an Earth-Air Heat Exchanger Using Model Experiment for Memorial Heating and Cooling
,”
Appl. Therm. Eng.
,
148
(
2
), pp.
838
845
. 10.1016/j.applthermaleng.2018.11.018
22.
Liu
,
Z.
,
Yu
,
Z. J.
,
Yang
,
T.
,
Li
,
S.
,
El Mankibi
,
M.
,
Roccamena
,
L.
,
Qin
,
d.
, and
Zhang
,
G.
,
2019
, “
Experimental Investigation of a Vertical Earth-to-Air Heat Exchanger System
,”
Energy Convers. Manage.
,
183
(
3
), pp.
241
251
. 10.1016/j.enconman.2018.12.100
23.
Brum
,
R. S.
,
Ramalho
,
J. V.
,
Rodrigues
,
M. K.
,
Rocha
,
L. A.
,
Isoldi
,
L. A.
, and
Dos Santos
,
E. D.
,
2019
, “
Design Evaluation of Earth-Air Heat Exchangers With Multiple Ducts
,”
Renewable Energy
,
135
(
5
), pp.
1371
1385
. 10.1016/j.renene.2018.09.063
24.
Taurines
,
K.
,
Girous-Julien
,
S.
, and
Menezo
,
C.
,
2019
, “
Energy and Thermal Analysis of an Innovative Earth-to-Air Heat Exchanger: Experimental Investigations
,”
Energy Build.
,
187
(
3
), pp.
1
15
. 10.1016/j.enbuild.2019.01.037
25.
Nayak
,
S.
, and
Tiwari
,
G.
,
2010
, “
Energy Metrics of Photovoltaic/Thermal and Earth air Heat Exchanger Integrated Greenhouse for Different Climatic Conditions of India
,”
Appl. Energy
,
87
(
10
), pp.
2984
2993
. 10.1016/j.apenergy.2010.04.010
26.
Jakhar
,
S.
,
Soni
,
M. S.
, and
Boehm
,
R. F.
,
2018
, “
Thermal Modeling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031011
. 10.1115/1.4039275
27.
Mahdavi
,
S.
,
Sarhaddi
,
F.
, and
Hedayatizadeh
,
M.
,
2019
, “
Energy/Exergy Based-Evaluation of Heating/Cooling Potential of PV/T and Earth-Air Heat Exchanger Integration Into a Solar Greenhouse
,”
Appl. Therm. Eng.
,
149
(
2
), pp.
996
1007
. 10.1016/j.applthermaleng.2018.12.109
28.
Afrand
,
M.
,
Shahsavar
,
A.
,
Talebizadeh Sardari
,
P.
, and
Salehipour
,
K. S. H.
,
2019
, “
Energy and Exergy Analysis of Two Novel Hybrid Solar Photovoltaic Geothermal Energy Systems Incorporating a Building Integrated Photovoltaic Thermal System and an Earth Air Heat Exchanger System
,”
Sol. Energy
,
188
(
8
), pp.
83
95
. 10.1016/j.solener.2019.05.080
29.
Li
,
Z. X.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A. A. A.
,
Kalbasi
,
R.
,
Afrand
,
M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Multi-objective Energy and Exergy Optimization of Different Configurations of Hybrid Earth-Air Heat Exchanger and Building Integrated Photovoltaic/Thermal System
,”
Energy Convers. Manage.
,
195
(
9
), pp.
1098
1110
. 10.1016/j.enconman.2019.05.074
30.
Bisoniya
,
T. S.
,
2015
, “
Design of Earth-Air Heat Exchanger System
,”
Geotherm. Energy
,
3
(
1
), p.
18
. 10.1186/s40517-015-0036-2
31.
De Paepe
,
M.
, and
Janssens
,
A.
,
2003
, “
Thermo-hydraulic Design of Earth-Air Heat Exchangers
,”
Energy Build.
,
35
(
4
), pp.
389
397
. 10.1016/S0378-7788(02)00113-5
32.
Alsarraf
,
J.
,
Moayedi
,
H.
,
Rashid
,
A. S. A.
,
Muazu
,
M. A.
, and
Shahsavar
,
A.
,
2020
, “
Application of PSO–ANN Modelling for Predicting the Exergetic Performance of a Building Integrated Photovoltaic/Thermal System
,”
Eng. Comput.
,
36
(
2
), pp.
633
646
. 10.1007/s00366-019-00721-4
33.
Gao
,
W.
,
Moayedi
,
H.
, and
Shahsavar
,
A.
,
2019
, “
The Feasibility of Genetic Programming and ANFIS in Prediction Energetic Performance of a Building Integrated Photovoltaic Thermal (BIPVT) System
,”
Sol. Energy
,
183
(
5
), pp.
293
305
. 10.1016/j.solener.2019.03.016
34.
Alnaqi
,
A. A.
,
Moayedi
,
H.
,
Shahsavar
,
A.
, and
Nguyen
,
T. K.
,
2019
, “
Prediction of Energetic Performance of a Building Integrated Photovoltaic/Thermal System Thorough Artificial Neural Network and Hybrid Particle Swarm Optimization Models
,”
Energy Convers. Manage.
,
183
(
3
), pp.
137
148
. 10.1016/j.enconman.2019.01.005
35.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
New York
.
36.
Tan
,
H.
, and
Charters
,
W.
,
1969
, “
Effect of Thermal Entrance Region on Turbulent Forced-Convective Heat Transfer for an Asymmetrically Heated Rectangular Duct With Uniform Heat Flux
,”
Sol. Energy
,
1969
(
4
), pp.
513
516
. 10.1016/0038-092X(69)90072-3
37.
Tonui
,
J. K.
, and
Tripanagnostopoulos
,
Y.
,
2007
, “
Air-Cooled PV/T Solar Collectors With Low Cost Performance Improvements
,”
Sol. Energy
,
81
(
4
), pp.
498
511
. 10.1016/j.solener.2006.08.002
38.
Bansal
,
V.
,
Misra
,
R.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2010
, “
Performance Analysis of Earth-Pipe-Air Heat Exchanger for Summer Cooling
,”
Energy Build.
,
42
(
5
), pp.
645
648
. 10.1016/j.enbuild.2009.11.001
You do not currently have access to this content.