Abstract

Laminar sub-layer formation in a smooth solar air heater (SAH) is one of the reasons for the low heat transfer coefficient. One of the most effective ways to overcome the problem and improve the heat transfer rate inside the SAH is to use artificial roughness in the form of ribs. The present investigation studies the consequence of inverted T-shaped ribs on the absorber plate of a CSAH. The absorber plate is exposed to a constant heat flux of 1000 W/m2 and is made up of aluminum. The investigation is done on the effect of Reynolds number (Re), relative roughness pitch (P/e), and relative roughness height (e/Dh) on entropy generation, fluid flow, and heat transfer characteristics of the system. A 2D fluid domain has been considered for the numerical analysis, and finite volume method is used to solve the equations of continuity, momentum, and energy. The governing equations are solved using the SST k–ω model. Thermo-hydraulic performance parameter (THPP) is also calculated using Nuavg_r and favg_r, which further helped to determine the optimal arrangement of inverted T-shaped ribs on the absorber plate of the SAH. The maximum THPP of 4.7744 is found for P/e = 7.143 at Re = 18,000. Correlation for Nuavg_r and favg_r as a function of Re and P/e is developed. Entropy generation per unit length due to fluid friction and heat transfer has been graphically represented.

References

1.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Effect of Roughness Shape on Heat Transfer and Flow Friction Characteristics of Solar Air Heater With Roughened Absorber Plate
,”
WIT Trans. Eng. Sci.
,
53
, pp.
43
51
.
2.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
331
.
3.
Karmare
,
S. V.
, and
Tikekar
,
A. N.
,
2010
, “
Analysis of Fluid Flow and Heat Transfer in a Rib Grit Roughened Surface Solar Air Heater Using CFD
,”
Sol. Energy
,
84
(
3
), pp.
409
417
.
4.
Saini
,
S. K.
, and
Saini
,
R. P.
,
2008
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Arc-Shaped Wire as Artificial Roughness
,”
Sol. Energy
,
82
(
12
), pp.
1118
1130
.
5.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.
6.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renewable Energy
,
34
(
5
), pp.
1285
1291
.
7.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Solar Air Heater With Hyperbolic Ribs: 3D Simulation With Experimental Validation
,”
Renewable Energy
,
113
, pp.
357
368
.
8.
Ngo
,
T. T.
, and
Phu
,
N. M.
,
2019
, “
Computational Fluid Dynamics Analysis of the Heat Transfer and Pressure Drop of Solar Air Heater With Conic-Curve Profile Ribs
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3235
3246
.
9.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With W-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
.
10.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.
11.
Deo
,
N. S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2016
, “
Performance Analysis of Solar Air Heater Duct Roughened With Multigap V-Down Ribs Combined With Staggered Ribs
,”
Renewable Energy
,
91
, pp.
484
500
.
12.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
13.
Ahmad
,
I.
,
Khan
,
N. H.
,
Hassan
,
M. A.
, and
Paswan
,
M. K.
,
2020
, “
Three-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism-Shaped Rib Roughness
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051001
.
14.
Kumar
,
R.
,
Kashyap
,
A. S.
,
Singh
,
P.
,
Goel
,
V.
, and
Kumar
,
K.
,
2020
, “
Innovatively Arranged Curved-Ribbed Solar-Assisted Air Heater: Performance and Correlation Development for Heat and Flow Characteristics
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031011
.
15.
Purohit
,
S.
,
Madhwesh
,
N.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2019
, “
Heat Transfer Augmentation Using an Innovative Helicoidal Finned Absorber Plate in a Solar Air Heater-A Numerical Study
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031016
.
16.
Sahu
,
M. K.
,
Sharma
,
M.
,
Matheswaran
,
M. M.
, and
Maitra
,
K.
,
2019
, “
On the Use of Longitudinal Fins to Enhance the Performance in Rectangular Duct of Solar Air Heaters—A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030802
.
17.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2020
, “
Thermal Enhancement Study of a Transverse Inverted-T Shaped Ribbed Solar Air Heater
,”
Int. Commun. Heat Mass Transf.
,
119
, p.
104922
.
18.
Kumar
,
A.
,
Singh
,
A. P.
,
Akshayveer
, and
Singh
,
O. P.
,
2022
, “
Effect of Channel Designs and Its Optimization for Enhanced Thermo-Hydraulic Performance of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051009
.
19.
Karwa
,
R.
,
2022
, “
Enhanced Heat Transfer Performance of Multiple Triangular Air Flow Passages in Parallel With Inclined Fins for Flat Plate Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051003
.
20.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Simulation of Flow and Heat Transfer in Triangular Cross-Sectional Solar-Assisted Air Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011007
.
21.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2018
, “
Performance Enhancement of a Curved Solar Air Heater Using CFD
,”
Sol. Energy
,
174
, pp.
556
569
.
22.
Mahboub
,
C.
,
Moummi
,
N.
,
Brima
,
A.
, and
Moummi
,
A.
,
2016
, “
Experimental Study of New Solar Air Heater Design
,”
Int. J. Green Energy
,
13
(
5
), pp.
521
529
.
23.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2019
, “
Thermo-Hydraulic Performance Enhancement of Convex-Concave Natural Convection Solar Air Heaters
,”
Sol. Energy
,
183
, pp.
146
161
.
24.
Gilani
,
S. E.
,
Al-Kayiem
,
H. H.
,
Woldemicheal
,
D. E.
, and
Gilani
,
S. I.
,
2017
, “
Performance Enhancement of Free Convective Solar Air Heater by Pin Protrusions on the Absorber
,”
Sol. Energy
,
151
, pp.
173
185
.
25.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2020
, “
Curved vs. Flat Solar Air Heater: Performance Evaluation Under Diverse Environmental Conditions
,”
Renewable Energy
,
145
, pp.
2056
2073
.
26.
Singh
,
A. P.
,
Akshayveer
,
K. A.
, and
Singh
,
O. P.
,
2020
, “
Efficient Design of Curved Solar Air Heater Integrated With Semi-Down Turbulators
,”
Int. J. Therm. Sci.
,
152
, p.
106304
.
27.
Kumar
,
A.
,
Singh
,
A. P.
,
Akshayveer
, and
Singh
,
O. P.
,
2022
, “
Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater
,”
Energy
,
239
(
Part A
), p.
121886
.
28.
Kumar
,
A.
,
Akshayveer
,
S. A. P.
, and
Singh
,
O. P.
,
2022
, “
Investigations for Efficient Design of a New Counter Flow Double-Pass Curved Solar Air Heater
,”
Renewable Energy
,
185
, pp.
759
770
.
29.
ASHRAE Standard 93-97
,
1977
,
Method of Testing to Determine the Thermal Performance of Solar Collectors
,
New York
. https://www.techstreet.com/standards/ashrae-93-1977?product_id=1875886
30.
Ansys Inc.
,
2013
,
Ansys Fluent 15.0—Theory Guide, Canonsburg, PA
.
31.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
15
(
9
), pp.
1647
1658
.
32.
McAdams
,
W. H.
,
2001
,
Heat Transmission
,
McGraw-Hill
,
New York
, p.
219
.
33.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “Turbulent and Transition Convective Heat Transfer in Ducts,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
,
and W.
Aung
, eds.,
John Wiley & Sons
,
Hoboken, NJ
, p.
166
.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
35.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
John Wiley & Sons
,
Hoboken, NJ
, p.
107
.
You do not currently have access to this content.