Abstract

Daylight data are required for energy-efficient building designs. However, daylight is scarcely measured, making the luminous efficacy model an alternative. This paper presents a method for modeling vertical luminous efficacy (Kvg) using measured data from measuring stations in Hong Kong. The artificial neural network (ANN), support vector machines (SVM), and empirical correlations were proposed for modeling Kvg. Machine learning (ML) models like ANN and SVM were used because they offer more accurate daylight predictions and ease in explaining complex relationships between atmospheric variables. Also, ML was explored since it has not been used in earlier vertical luminous efficacy studies. Sensitivity analysis was also carried out to determine the relative importance of input variables used for developing the proposed models. Findings show that scattering angle and diffuse fraction are crucial variables in vertical luminous efficacy modeling. Furthermore, when all proposed models were used to predict vertical daylight, it was observed that the peak relative root mean square error (%RMSE) was less than 18.6%. The obtained %RMSE showed that all models provided acceptable performance when evaluated against the measured daylight data. Finally, the findings also showed that the ANN models outperformed the SVM and empirical models.

References

1.
Vaisi
,
S.
, and
Kharvari
,
F.
,
2019
, “
Evaluation of Daylight Regulations in Buildings Using Daylight Factor Analysis Method by Radiance
,”
Energy Sustain. Dev.
,
49
, pp.
100
108
.
2.
Sharma
,
P.
, and
Rakshit
,
D.
,
2016
, “
Financial Viability of Energy Conservation Using Natural Light in an Academic Building in Temperate Zone
,”
ASME J. Sol. Energy Eng.
,
1386
(
6
), p.
061015
.
3.
Verma
,
R.
,
Kumar
,
S.
,
Rakshit
,
D.
, and
Premachandran
,
B.
,
2022
, “
Design and Optimization of Energy Consumption for a Low Rise Building With Seasonal Variations Under Composite Climate of India
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011006
.
4.
Aghimien
,
E. I.
, and
Li
,
D. H. W.
,
2022
, “
Application of Luminous Efficacies for Daylight Illuminance Data Generation in Subtropical Hong Kong
,”
Smart Sustain. Built Environ.
,
2
(
2
), pp.
271
293
.
5.
Dieste-Velasco
,
M. I.
,
Díez-Mediavilla
,
M.
,
Alonso-Tristań
,
C.
,
Gonźalez-Pena
,
D.
,
Rodríguez-Amigo
,
M. C.
, and
García-Calderon
,
T.
,
2020
, “
A New Diffuse Luminous Efficacy Model for Daylight Availability in Burgos, Spain
,”
“Renewable Energy
,
146
, pp.
2812
2826
.
6.
Fabian
,
M.
,
Uetani
,
Y.
, and
Darula
,
S.
,
2018
, “
Monthly Luminous Efficacy Models and Illuminance Prediction Using Ground Measured and Satellite Data
,”
Sol. Energy
,
162
, pp.
95
108
.
7.
Dieste-Velasco
,
M. I.
,
Díez-Mediavilla
,
M.
,
Granados-López
,
D.
,
González-Peña
,
D.
, and
Alonso-Tristán
,
C.
,
2019
, “
Performance of Global Luminous Efficacy Models and Proposal of a New Model for Daylighting in Burgos, Spain
,”
“Renewable Energy
,
133
, pp.
1000
1010
.
8.
Aghimien
,
E. I.
,
Li
,
D. H. W.
,
Chen
,
W.
, and
Tsang
,
E. K.
,
2021
, “
Daylight Luminous Efficacy: An Overview
,”
Sol. Energy
,
228
, pp.
706
724
.
9.
Azad
,
A. S.
,
Rakshit
,
D.
, and
Patil
,
K. N.
,
2018
, “
Model Development and Evaluation of Global and Diffuse Luminous Efficacy for Humid Sub-Tropical Region
,”
Renewable Energy
,
119
, pp.
375
387
.
10.
Littlefair
,
P. J.
,
1988
, “
Measurements of the Luminous Efficacy of Daylight
,”
Light. Res. Technol.
,
20
(
4
), pp.
177
188
.
11.
Ullah
,
M. B.
,
1996
, “
International Daylighting Measurements Programme-Singapore Data II: Luminous Efficacy for the Tropics
,”
Light. Res. Technol.
,
28
(
75
), pp.
75
81
.
12.
Li
,
D. H. W.
, and
Lam
,
J. C.
,
2001
, “
Predicting Vertical Luminous Efficacy Using Horizontal Solar Data
,”
Light. Res. Technol.
,
33
(
1
), pp.
25
42
.
13.
Robledo
,
L.
, and
Soler
,
A.
,
2002
, “
A Simple Clear Skies Model for the Luminous Efficacy of Diffuse Solar Radiation on Inclined Surfaces
,”
Renewable Energy
,
26
(
2
), pp.
169
176
.
14.
Cucumo
,
M.
,
DeRosa
,
A.
,
Ferraro
,
V.
,
Kaliakatsos
,
D.
, and
Marinelli
,
V.
,
2008
, “
Correlations of Global and Diffuse Solar Luminous Efficacy for All Sky Conditions and Comparisons With Experimental Data of Five Localities
,”
Renewable Energy
,
33
(
9
), pp.
2036
2047
.
15.
De Rosa
,
A.
,
Ferraro
,
V.
,
Kaliakatsos
,
D.
, and
Marinelli
,
V.
,
2008
, “
Simplified Correlations of Global, Direct, and Diffuse Luminous Efficacy on Horizontal and Vertical Surfaces
,”
“ Energy Build.
,
40
(
11
), pp.
1991
2001
.
16.
Li
,
D. H. W.
,
Lam
,
T. N. T.
,
Cheung
,
K. L.
, and
Tang
,
H. L.
,
2008
, “
An Analysis of Luminous Efficacies Under the CIE Standard Skies
,”
Renewable Energy
,
33
(
11
), pp.
2357
2365
.
17.
Li
,
D. H. W.
,
Chen
,
W.
,
Li
,
S.
, and
Lou
,
S.
,
2019
, “
Estimation of Hourly Global Solar Radiation Using Multivariate Adaptive Regression Spline MARS—A Case Study of Hong Kong
,”
Energy
,
186
, p.
115857
.
18.
López
,
G.
, and
Gueymard
,
C. A.
,
2007
, “
Clear-Sky Solar Luminous Efficacy Determination Using Artificial Neural Networks
,”
Sol. Energy
,
81
(
7
), pp.
929
939
.
19.
Seyedzadeh
,
S.
,
Rahimian
,
F. P.
,
Glesk
,
I.
, and
Roper
,
M.
,
2018
, “
Machine Learning for Estimation of Building Energy Consumption and Performance: A Review
,”
Vis. Eng.
,
6
(
1
), p.
1
.
20.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2021
, “
Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051003
.
21.
Fan
,
J.
,
Wu
,
L.
,
Zhang
,
F.
,
Cai
,
H.
,
Zeng
,
W.
,
Wang
,
X.
, and
Zou
,
H.
,
2019
, “
Empirical and Machine Learning Models for Predicting Daily Global Solar Radiation From Sunshine Duration: A Review and Case Study in China
,”
Renewable Sustain. Energy Rev.
,
100
, pp.
186
212
.
22.
Truong
,
N.
,
Ngo
,
N.
, and
Pham
,
A.
,
2021
, “
Forecasting Time-Series Energy Data in Buildings Using an Additive Artificial Intelligence Model for Improving Energy Efficiency
,”
Comput. Intell. Neurosci.
,
2021
, pp.
1
12
.
23.
Zendehboudi
,
A.
,
Baseer
,
M. A.
, and
Saidur
,
R.
,
2018
, “
Application of Support Vector Machine Models for Forecasting Solar and Wind Energy Resources: A Review
,”
J. Clean. Prod.
,
199
, pp.
272
285
.
24.
Lou
,
S.
,
Huang
,
Y.
,
Xia
,
D.
,
Lun
,
I. Y. F.
, and
Li
,
D. H. W.
,
2021
, “
A Study of the Skylight Coverage Ratio for Air-Conditioned Atriums in the Hot and Humid Regions
,”
Int. J. Low-Carbon Technol.
,
16
(
3
), pp.
946
955
.
25.
Chung
,
W.
, and
Yeung
,
I. M. H.
,
2021
, “
A Two-Stage Regression-Based Benchmarking Approach to Evaluate School’s Energy Efficiency in Different Tariff Regions
,”
Energy Sustain. Dev.
,
61
, pp.
15
27
.
26.
Muneer
,
T.
,
Gul
,
M. S.
, and
Kubie
,
J.
,
2000
, “
Models for Estimating Solar Radiation and Illuminance From Meteorological Parameters
,”
ASME J. Sol. Energy Eng.
,
122
(
3
), pp.
146
153
.
27.
Perez
,
R.
,
Ineichen
,
P.
,
Seals
,
R.
,
Michalsky
,
J.
, and
Stewart
,
R.
,
1990
, “
Modeling Daylight Availability and Irradiance Components From Direct and Global Irradiance
,”
Sol. Energy
,
44
(
5
), pp.
271
289
.
28.
Secker
,
S. M.
,
1983
, “
Regional Variations of Daylight Availability—A Review of Measured Data and Estimating Methods
,”
Light. Res. Technol.
,
15
(
3
), pp.
151
156
.
29.
Despotovic
,
M.
,
Nedic
,
V.
,
Despotovic
,
D.
, and
Cvetanovic
,
S.
,
2015
, “
Review and Statistical Analysis of Different Global Solar Radiation Sunshine Models
,”
Renewable Sustain. Energy Rev.
,
52
, pp.
1869
1880
.
30.
Cervantes
,
J.
,
Garcia-Lamont
,
F.
,
Rodríguez-Mazahua
,
L.
, and
Lopez
,
A.
,
2020
, “
A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends
,”
“Neurocomputing
,
408
, pp.
189
215
.
31.
Wang
,
M.
,
Wright
,
J.
,
Brownlee
,
A.
, and
Buswell
,
R.
,
2016
, “
A Comparison of Approaches to Stepwise Regression on Variables Sensitivities in Building Simulation and Analysis
,”
Energy Build.
,
127
, pp.
313
326
.
32.
Chung
,
T. M.
,
1992
, “
A Study of Luminous Efficacy of Daylight in Hong Kong
,”
Energy Build.
,
19
(
1
), pp.
45
50
.
You do not currently have access to this content.