Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Increasing penetration of variable renewable energy resources requires the deployment of energy storage at a range of durations. Long-duration energy storage (LDES) technologies will fulfill the need to firm variable renewable energy resource output year round; lithium-ion batteries are uneconomical at these durations. Thermal energy storage (TES) is one promising technology for LDES applications because of its siting flexibility and ease of scaling. Particle-based TES systems use low-cost solid particles that have higher temperature limits than the molten salts used in traditional concentrated solar power systems. A key component in particle-based TES systems is the containment silo for the high-temperature (>1100 C) particles. This study combined experimental testing and computational modeling methods to design and characterize the performance of a particle containment silo for LDES applications. A laboratory-scale silo prototype was built and validated the congruent transient finite element analysis (FEA) model. The performance of a commercial-scale silo was then characterized using the validated model. The commercial-scale model predicted a storage efficiency above 95% after 5 days of storage with a design storage temperature of 1200 C. Insulation material and concrete temperature limits were considered as well. The validation of the methodology means the FEA model can simulate a range of scenarios for future applications. This work supports the development of a promising LDES technology with implications for grid-scale electrical energy storage, but also for thermal energy storage for industrial process heating applications.

References

1.
Jenkins
,
J. D.
,
Luke
,
M.
, and
Thernstrom
,
S.
,
2018
, “
Getting to Zero Carbon Emissions in the Electric Power Sector
,”
Joule
,
2
(
12
), pp.
2498
2510
.
2.
U.S. Department of Energy
,
2022
, “Industrial Decarbonization Roadmap,” https://www.energy.gov/sites/default/files/2022-09/IndustrialDecarbonizationRoadmap.pdf.
3.
Stack
,
D. C.
,
Curtis
,
D.
, and
Forsberg
,
C.
,
2019
, “
Performance of Firebrick Resistance-Heated Energy Storage for Industrial Heat Applications and Round-Trip Electricity Storage
,”
Appl. Energy
,
242
, pp.
782
796
.
4.
The National Renewable Energy Laboratory (NREL)
,
2021
, “NREL Options a Modular, Cost-Effective, Build-Anywhere Particle Thermal Energy Storage Technology,” https://www.nrel.gov/news/program/2021/nrel-options-a-modular-cost-effective-build-anywhere-particle-thermal-energy-storage-technology.html.
5.
Davenport
,
P.
,
Martinek
,
J.
, and
Ma
,
Z.
,
2019
, “Analysis of Concentrating Solar Thermal System to Support Thermochemical Energy Storage or Solar Fuel Generation Processes,” Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, WA, p. V001T03A005.
6.
Mills
,
B. H.
,
Ho
,
C. K.
,
Schroeder
,
N. R.
,
Shaeffer
,
R.
,
Laubscher
,
H. F.
, and
Albrecht
,
K. J.
,
2022
, “
Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications
,”
Energies
,
15
(
5
).
7.
Ma
,
Z.
,
Wang
,
X.
,
Davenport
,
P.
,
Gifford
,
J.
, and
Martinek
,
J.
,
2022
, “
Preliminary Component Design and Cost Estimation of a Novel Electric-Thermal Energy Storage System Using Solid Particles
,”
ASME J. Sol. Energy. Eng.
,
144
(
3
), p.
030901
.
8.
Dowling
,
J. A.
,
Rinaldi
,
K. Z.
,
Ruggles
,
T. H.
,
Davis
,
S. J.
,
Yuan
,
M.
,
Tong
,
F.
,
Lewis
,
N. S.
, and
Caldeira
,
K.
,
2020
, “
Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems
,”
Joule
,
4
(
9
), pp.
1907
1928
.
9.
Sepulveda
,
N. A.
,
Jenkins
,
J. D.
,
Edington
,
A.
,
Mallapragada
,
D. S.
, and
Lester
,
R. K.
,
2021
, “
The Design Space for Long-Duration Energy Storage in Decarbonized Power Systems
,”
Nat. Energy
,
6
(
5
), pp.
506
516
.
10.
Ziegler
,
M. S.
,
Mueller
,
J. M.
,
Pereira
,
G. D.
,
Song
,
J.
,
Ferrara
,
M.
,
Chiang
,
Y. -M.
, and
Trancik
,
J. E.
,
2019
, “
Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization
,”
Joule
,
3
(
9
), pp.
2134
2153
.
11.
Polar Night Energy
,
2020
, “Polar Night Energy: Technology,” https://polarnightenergy.fi/technology, Accessed January 12, 2020..
12.
Davenport
,
P.
,
Ma
,
Z.
,
Nation
,
W.
,
Schirck
,
J.
,
Morris
,
A.
, and
Lambert
,
M.
,
2022
, “
Thermal Stability of Silica for Application in Thermal Energy Storage
,”
AIP Conf. Proc.
,
2445
(
1
), p.
160003
.
13.
Ma
,
Z.
,
Davenport
,
P.
, and
Zhang
,
R.
,
2020
, “
Design Analysis of a Particle-Based Thermal Energy Storage System for Concentrating Solar Power or Grid Energy Storage
,”
J. Energy Storage
,
29
, p.
101382
.
14.
Gifford
,
J.
,
Ma
,
Z.
,
Wang
,
X.
, and
Braun
,
R.
,
2023
, “
Computational Fluid Dynamic Analysis of a Novel Particle-to-Air Fluidized-Bed Heat Exchanger for Particle-Based Thermal Energy Storage Applications
,”
J. Energy Storage
,
73
(
Part A
), p.
108635
.
15.
Gifford
,
J.
,
Wang
,
X.
,
Ma
,
Z.
, and
Braun
,
R.
,
2024
, “
Modeling Electrical Particle Thermal Energy Storage Systems for Long-Duration, Grid-Electricity Storage Applications
,”
Appl. Energy
,
371
, p.
123521
.
16.
Diethelm
,
M.
,
Penninck
,
L.
,
Regnat
,
M.
,
Offermans
,
T.
,
Zimmermann
,
B.
,
Kirsch
,
C.
,
Hiestand
,
R.
,
Altazin
,
S.
, and
Ruhstaller
,
B.
,
2020
, “
Finite Element Modeling for Analysis of Electroluminescence and Infrared Images of Thin-Film Solar Cells
,”
Sol. Energy
,
209
, pp.
186
193
.
17.
Anagnostopoulos
,
A.
,
Sebastia-Saez
,
D.
,
Campbell
,
A. N.
, and
Arellano-Garcia
,
H.
,
2020
, “
Finite Element Modelling of the Thermal Performance of Salinity Gradient Solar Ponds
,”
Energy
,
203
, p.
117861
.
18.
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy. Eng.
,
144
(
1
), p.
011009
.
19.
Gage
,
S. H.
,
Kesseli
,
D.
,
Dupree
,
J.
,
Kimbal
,
C.
,
Rigby
,
J.
,
Yates
,
J.
,
Morrison
,
B.
,
Bigham
,
G.
, and
Turchi
,
C. S.
,
2021
, “
Technical and Economic Feasibility of Molten Chloride Salt Thermal Energy Storage Systems
,”
Sol. Energy Mater. Sol. Cells.
,
226
, p.
111099
.
20.
El-Leathy
,
A.
,
Jeter
,
S.
,
Al-Ansary
,
H.
,
Abdel-Khalik
,
S.
,
Roop
,
J.
,
Golob
,
M.
,
Danish
,
S.
,
Alrished
,
A.
,
Djajadiwinata
,
E.
, and
Al-Suhaibani
,
Z.
,
2014
, “
Thermal Performance Evaluation of Two Thermal Energy Storage Tank Design Concepts for Use With a Solid Particle Receiver-Based Solar Power Tower
,”
Energies
,
7
(
12
), pp.
8201
8216
.
21.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed.,
American Chemical Society and the American Institute of Physics
,
Woodbury, NY
.
22.
Engineering ToolBox
,
2008
, “Calcium Silicate Insulation: Thermal Conductivity of Calcium Silicate Insulation - Temperature and K-Values,” https://www.engineeringtoolbox.com/calcium-silicate-insulation-k-values-d_1171.html, Accessed January 22, 2024.
23.
Engineering ToolBox
,
2007
, “Mineral Wool Insulation Thermal Conductivity - K-Values - Vs. Temperature,” https://www.engineeringtoolbox.com/mineral-wool-insulation-k-values-d_815.html, Accessed January 22, 2024.
You do not currently have access to this content.