Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Accurate predictive daily global horizontal irradiation models are essential for diverse solar energy applications. Their long-term performances can be assessed using average years. This study scrutinized 70 machine learning and 44 empirical models using two disjoint 5-year average daily training and validation datasets, each comprising 365 records and ten features. The features included day number, minimum and maximum air temperature, air temperature amplitude, theoretical and observed sunshine hours, theoretical extraterrestrial horizontal irradiation, relative sunshine, cloud cover, and relative humidity. Fourteen machine learning algorithms, namely, multiple linear regression, ridge regression, Lasso regression, elastic net regression, Huber regression, k-nearest neighbors, decision tree, support vector machine, multilayer perceptron, extreme learning machine, generalized regression neural network, extreme gradient boosting, gradient boosting machine, and light gradient boosting machine were trained, validated, and instantiated as base learners in four strategically designed homogeneous parallel ensembles—variants of pasting, random subspace, bagging, and random patches—which also were scrutinized, producing 70 models. Specific hyperparameters from the algorithms were optimized. Validation showed that at least two ensembles outperformed its individual model. Huber-subspace ranked first with a root mean square error of 1.495 MJ/m2/day. The multilayer perceptron was most robust to the random perturbations of the ensembles which extrapolate to good tolerance to ground-truth data noise. The best empirical model returned a validation root mean square error of 1.595 MJ/m2/day but was outperformed by 93% of the machine learning models with the homogeneous parallel ensembles producing superior predictive accuracies.

References

1.
Kimball
,
H. H.
,
1919
, “
Variations in the Total and Luminous Solar Radiation With Geographical Position in the United States
,”
Mon. Weather Rev.
,
47
(
11
), pp.
769
793
.
2.
Angström
,
A.
,
1924
, “
Solar and Terrestrial Radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation
,”
Q. J. R. Meteorol. Soc.
,
50
(
210
), pp.
121
126
.
3.
Chen
,
J. L.
,
He
,
L.
,
Yang
,
H.
,
Ma
,
M.
,
Chen
,
Q.
,
Wu
,
S. J.
, and
Xiao
,
Z. L.
,
2019
, “
Empirical Models for Estimating Monthly Global Solar Radiation: A Most Comprehensive Review and Comparative Case Study in China
,”
Renew. Sustain. Energy Rev.
,
108
, pp.
91
111
.
4.
Besharat
,
F.
,
Dehghan
,
A. A.
, and
Faghih
,
A. R.
,
2013
, “
Empirical Models for Estimating Global Solar Radiation: A Review and Case Study
,”
Renew. Sustain. Energy Rev.
,
21
, pp.
798
821
.
5.
Ertekin
,
C.
, and
Yaldiz
,
O.
,
1999
, “
Estimation of Monthly Average Daily Global Radiation on Horizontal Surface for Antalya (Turkey)
,”
Renew. Energy
,
17
(
1
), pp.
95
102
.
6.
Trnka
,
M.
,
Eitzinger
,
J.
,
Kapler
,
P.
,
Dubrovský
,
M.
,
Semerádová
,
D.
,
Žalud
,
Z.
, and
Formayer
,
H.
,
2007
, “
Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models
,”
Sensors
,
7
(
10
), pp.
2330
2362
.
7.
Page
,
J.
,
2018
, “Chapter IIA-1-The Role of Solar-Radiation Climatology in the Design of Photovoltaic System,”
McEvoy's Handbook of Photovoltaics
,
S.
Kalogiru
, ed.,
Elsevier Ltd
,
London
, pp.
601
670
.
8.
Aliana
,
A.
,
Chang
,
M.
,
Østergaard
,
P. A.
,
Victoria
,
M.
, and
Andersen
,
A. N.
,
2022
, “
Performance Assessment of Using Various Solar Radiation Data in Modelling Large-Scale Solar Thermal Systems Integrated in District Heating Networks
,”
Renew. Energy
,
190
, pp.
699
712
.
9.
Alizamir
,
M.
,
Kim
,
S.
,
Kisi
,
O.
, and
Zounemat-Kermani
,
M.
,
2020
, “
A Comparative Study of Several Machine Learning Based Non-linear Regression Methods in Estimating Solar Radiation: Case Studies of the USA and Turkey Regions
,”
Energy
,
197
, p.
117239
.
10.
Benghanem
,
M.
,
Mellit
,
A.
, and
Alamri
,
S. N.
,
2009
, “
ANN-Based Modelling and Estimation of Daily Global Solar Radiation Data: A Case Study
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1644
1655
.
11.
Biazar
,
S. M.
,
Rahmani
,
V.
,
Isazadeh
,
M.
,
Kisi
,
O.
, and
Dinpashoh
,
Y.
,
2020
, “
New Input Selection Procedure for Machine Learning Methods in Estimating Daily Global Solar Radiation
,”
Arabian J. Geosci.
,
13
(
12
), p.
431
.
12.
Bounoua
,
Z.
, and
Mechaqrane
,
A.
,
2018
, “
Prediction of Daily Global Horizontal Solar Irradiation Using Artificial Neural Networks and Commonly Measured Meteorological Parameters
,”
AIP Conference Proceedings of ICSERTA
,
Ouarzazate, Morocco
,
May 8–10
,
p. 020024
.
13.
Bounoua
,
Z.
,
Ouazzani Chahidi
,
L.
, and
Mechaqrane
,
A.
,
2021
, “
Estimation of Daily Global Solar Radiation Using Empirical and Machine-Learning Methods: A Case Study of Five Moroccan Locations
,”
Sustain. Mater. Technol.
,
28
, p.
e00261
.
14.
Dhakal
,
S.
,
Gautam
,
Y.
, and
Bhattarai
,
A.
,
2020
, “
Evaluation of Temperature-Based Empirical Models and Machine Learning Techniques to Estimate Daily Global Solar Radiation at Biratnagar Airport, Nepal
,”
Adv. Meteorol.
,
2020
, p.
8895311
.
15.
Fan
,
J.
,
Wang
,
X.
,
Wu
,
L.
,
Zhou
,
H.
,
Zhang
,
F.
,
Yu
,
X.
,
Lu
,
X.
, and
Xiang
,
Y.
,
2018
, “
Comparison of Support Vector Machine and Extreme Gradient Boosting for Predicting Daily Global Solar Radiation Using Temperature and Precipitation in Humid Subtropical Climates: A Case Study in China
,”
Energy Convers. Manage.
,
164
, pp.
102
111
.
16.
Feng
,
Y.
,
Gong
,
D.
,
Zhang
,
Q.
,
Jiang
,
S.
,
Zhao
,
L.
, and
Cui
,
N.
,
2019
, “
Evaluation of Temperature-Based Machine Learning and Empirical Models for Predicting Daily Global Solar Radiation
,”
Energy Convers. Manage.
,
198
, p.
111780
.
17.
Feng
,
Y.
,
Hao
,
W.
,
Li
,
H.
,
Cui
,
N.
,
Gong
,
D.
, and
Gao
,
L.
,
2020
, “
Machine Learning Models to Quantify and Map Daily Global Solar Radiation and Photovoltaic Power
,”
Renew. Sustain. Energy Rev.
,
118
, p.
109393
.
18.
Huang
,
L.
,
Kang
,
J.
,
Wan
,
M.
,
Fang
,
L.
,
Zhang
,
C.
, and
Zeng
,
Z.
,
2021
, “
Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events
,”
Front. Earth Sci. (Lausanne)
,
9
, p.
596860
.
19.
Khosravi
,
A.
,
Nunes
,
R. O.
,
Assad
,
M. E. H.
, and
Machado
,
L.
,
2018
, “
Comparison of Artificial Intelligence Methods in Estimation of Daily Global Solar Radiation
,”
J. Cleaner Prod.
,
194
, pp.
342
358
.
20.
Mohamed
,
Z. E.
,
2019
, “
Using the Artificial Neural Networks for Prediction and Validating Solar Radiation
,”
J. Egypt. Math. Soc.
,
27
(
1
), p.
47
.
21.
Mohammadi
,
K.
,
Shamshirband
,
S.
,
Anisi
,
M. H.
,
Amjad Alam
,
K.
, and
Petković
,
D.
,
2015
, “
Support Vector Regression Based Prediction of Global Solar Radiation on a Horizontal Surface
,”
Energy Convers. Manage.
,
91
, pp.
433
441
.
22.
Mousavi
,
S. M.
,
Mostafavi
,
E. S.
,
Jaafari
,
A.
,
Jaafari
,
A.
, and
Hosseinpour
,
F.
,
2015
, “
Using Measured Daily Meteorological Parameters to Predict Daily Solar Radiation
,”
Measurement (Lond)
,
76
, pp.
148
155
.
23.
Wang
,
L.
,
Kisi
,
O.
,
Zounemat-Kermani
,
M.
,
Salazar
,
G. A.
,
Zhu
,
Z.
, and
Gong
,
W.
,
2016
, “
Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison
,”
Renew. Sustain. Energy Rev.
,
61
, pp.
384
397
.
24.
Xue
,
X.
, and
Zhou
,
H.
,
2019
, “
Soft Computing Methods for Predicting Daily Global Solar Radiation
,”
Numer. Heat Transfer Part B
,
76
(
1
), pp.
18
31
.
25.
Zeng
,
Z.
,
Wang
,
Z.
,
Gui
,
K.
,
Yan
,
X.
,
Gao
,
M.
,
Luo
,
M.
,
Geng
,
H.
, et al
,
2020
, “
Daily Global Solar Radiation in China Estimated From High-Density Meteorological Observations: A Random Forest Model Framework
,”
Earth Space Sci.
,
7
(
2
), p.
e2019EA001058
.
26.
Kim
,
S.
,
Seo
,
Y.
,
Rezaie-Balf
,
M.
,
Kisi
,
O.
,
Ghorbani
,
M. A.
, and
Singh
,
V. P.
,
2019
, “
Evaluation of Daily Solar Radiation Flux Using Soft Computing Approaches Based on Different Meteorological Information: Peninsula vs Continent
,”
Theor. Appl. Climatol.
,
137
(
1–2
), pp.
693
712
.
27.
Chen
,
J. L.
,
Li
,
G. S.
, and
Wu
,
S. J.
,
2013
, “
Assessing the Potential of Support Vector Machine for Estimating Daily Solar Radiation Using Sunshine Duration
,”
Energy Convers. Manage.
,
75
, pp.
311
318
.
28.
Fan
,
J.
,
Wu
,
L.
,
Zhang
,
F.
,
Cai
,
H.
,
Zeng
,
W.
,
Wang
,
X.
, and
Zou
,
H.
,
2019
, “
Empirical and Machine Learning Models for Predicting Daily Global Solar Radiation From Sunshine Duration: A Review and Case Study in China
,”
Renew. Sustain. Energy Rev.
,
100
, pp.
186
212
.
29.
Almaraashi
,
M.
,
2018
, “
Investigating the Impact of Feature Selection on the Prediction of Solar Radiation in Different Locations in Saudi Arabia
,”
Appl. Soft Comput. J.
,
66
, pp.
250
263
.
30.
Mohammadi
,
K.
,
Shamshirband
,
S.
,
Kamsin
,
A.
,
Lai
,
P. C.
, and
Mansor
,
Z.
,
2016
, “
Identifying the Most Significant Input Parameters for Predicting Global Solar Radiation Using an ANFIS Selection Procedure
,”
Renew. Sustain. Energy Rev.
,
63
, pp.
423
434
.
31.
Behrang
,
M. A.
,
Assareh
,
E.
,
Ghanbarzadeh
,
A.
, and
Noghrehabadi
,
A. R.
,
2010
, “
The Potential of Different Artificial Neural Network (ANN) Techniques in Daily Global Solar Radiation Modeling Based on Meteorological Data
,”
Sol. Energy
,
84
(
8
), pp.
1468
1480
.
32.
Fan
,
J.
,
Wang
,
X.
,
Wu
,
L.
,
Zhang
,
F.
,
Bai
,
H.
,
Lu
,
X.
, and
Xiang
,
Y.
,
2018
, “
New Combined Models for Estimating Daily Global Solar Radiation Based on Sunshine Duration in Humid Regions: A Case Study in South China
,”
Energy Convers. Manage.
,
156
, pp.
618
625
.
33.
Jahani
,
B.
,
Dinpashoh
,
Y.
, and
Raisi Nafchi
,
A.
,
2017
, “
Evaluation and Development of Empirical Models for Estimating Daily Solar Radiation
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
878
891
.
34.
Fahrmeir
,
L.
,
Kneib
,
T.
,
Lang
,
S.
, and
Marx
,
B.
,
2013
,
Regression: Models, Methods and Applications
,
Springer
,
Heidelberg
.
35.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.
36.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodolog.)
,
58
(
1
), pp.
267
288
.
37.
Zou
,
H.
, and
Hastie
,
T.
,
2005
, “
Regularization and Variable Selection Via the Elastic Net
,”
J. R. Stat. Soc. Ser. B
,
67
(
2
), pp.
301
320
.
38.
Huber
,
P. J.
,
1964
, “
Robust Estimation of a Location Parameter
,”
Ann. Math. Stat.
,
35
(
1
), pp.
73
101
.
39.
Morgan
,
J. N.
, and
Sonquist
,
J. A.
,
1963
, “
Problems in the Analysis of Survey Data, and a Proposal
,”
J. Am. Stat. Assoc.
,
58
(
302
), pp.
415
434
.
40.
Fix
,
E.
, and
Hodges
,
J. L.
,
1989
, “
Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties
,”
Int. Stat. Rev.
,
57
(
3
), pp.
238
247
.
41.
Cover
,
T. M.
, and
Hart
,
P. E.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
42.
Vapnik
,
V.
,
Golowich
,
S. E.
, and
Smola
,
A.
,
1997
, “
Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing
,”
Advances in Neural Information Processing Systems—Proceedings of the NIPS
,
Denver, CO
,
Dec. 3–5
, pp.
281
287
.
43.
Huang
,
G. B.
,
Zhu
,
Q. Y.
, and
Siew
,
C. K.
,
2006
, “
Extreme Learning Machine: Theory and Applications
,”
Neurocomputing
,
70
(
1–3
), pp.
489
501
.
44.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
45.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
785
794
.
46.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T. Y.
,
2017
, “
LightGBM: A Highly Efficient Gradient Boosting Decision Tree
,”
Advances in Neural Information Processing Systems—Proceedings of the NIPS
,
Long Beach, CA
,
Dec. 4–9
, pp.
3149
3157
.
47.
Breiman
,
L.
,
1999
, “
Pasting Small Votes for Classification in Large Databases and On-Line
,”
Mach. Learn.
,
36
(
1
), pp.
85
103
.
48.
Ho
,
T. K.
,
1998
, “
The Random Subspace Method for Constructing Decision Forests
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
20
(
8
), pp.
832
844
.
49.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.
50.
Louppe
,
G.
, and
Geurts
,
P.
,
2012
, “
Ensembles on Random Patches
,”
Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2012. Lecture Notes in Computer Science
, Vol. 7523,
Bristol, UK
,
Sept. 24–28
, pp.
346
361
.
51.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
10
), pp.
281
305
.
52.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms Supplementary Materials
,”
Advances in Neural Information Processing Systems—Proceedings of the NIPS
,
Lake Tahoe, NV
,
Dec. 3–6
, pp.
2951
2959
.
53.
Bergstra
,
J.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “
Algorithms for Hyper-parameter Optimization
,”
Advances in Neural Information Processing Systems—Proceedings of the NIPS
,
Granada, Spain
,
Dec. 12–15
, pp.
2546
2554
.
54.
Akiba
,
T.
,
Sano
,
S.
,
Yanase
,
T.
,
Ohta
,
T.
, and
Koyama
,
M.
,
2019
, “
Optuna: A Next-Generation Hyperparameter Optimization Framework
,”
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Anchorage, Alaska
,
Dec. 4–8
, pp.
2623
2631
.
55.
De Souza
,
K.
,
2018
, “
Temperature-Based Model for Monthly Average Hourly Global Solar Radiation for the Caribbean Island of Trinidad
,”
J. Renew. Sustain. Energy
,
10
(
3
), p.
033701
.
56.
De Souza
,
K.
, and
Andrews
,
R.
,
2015
, “
Models for Daily Global Solar Radiation for the Caribbean Island of Trinidad
,”
J. Renew. Sustain. Energy
,
7
(
1
), p.
013132
.
57.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
58.
De Souza
,
K.
,
2023
, “
Novel Assessment and Classification of Monthly Average Daily Global Solar Radiation Models Through a Figure of Merit Called Irradiation Time Equivalence: Analysis of 70 Regression Models Based on Air Temperature and Sunshine Hours Predictors
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011004
.
59.
Gueymard
,
C. A.
,
Bright
,
J. M.
,
Lingfors
,
D.
,
Habte
,
A.
, and
Sengupta
,
M.
,
2019
, “
A Posteriori Clear-Sky Identification Methods in Solar Irradiance Time Series: Review and Preliminary Validation Using Sky Imagers
,”
Renew. Sustain. Energy Rev.
,
109
, pp.
412
427
.
60.
Wettschereck
,
D.
,
Aha
,
D. W.
, and
Mohri
,
T.
,
1997
, “
A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms
,”
Artif. Intell. Rev.
,
11
(
1–5
), pp.
273
314
.
61.
Chang
,
C. C.
, and
Lin
,
C. J.
,
2011
, “
LIBSVM: A Library for Support Vector Machines
,”
ACM Trans. Intell. Syst. Technol.
,
2
(
3
), pp.
1
27
.
62.
Murtagh
,
F.
,
1991
, “
Multilayer Perceptrons for Classification and Regression
,”
Neurocomputing
,
2
(
5–6
), pp.
183
197
.
63.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
.
64.
Bohm
,
G.
, and
Zech
,
G.
,
2017
,
Introduction to Statistics and Data Analysis for Physicists
,
Verlag Deutsches Elektronen-Synchrotron
,
Hamburg
.
65.
Hargreaves
,
G. H.
, and
Samani
,
Z. A.
,
1982
, “
Estimating Potential Evapotranspiration
,”
J. Irrig. Drain. Div. ASCE
,
108
(
3
), pp.
225
230
.
66.
Chen
,
R.
,
Ersi
,
K.
,
Yang
,
J.
,
Lu
,
S.
, and
Zhao
,
W.
,
2004
, “
Validation of Five Global Radiation Models With Measured Daily Data in China
,”
Energy Convers. Manage.
,
45
(
11–12
), pp.
1759
1769
.
67.
Richardson
,
C. W.
,
1985
, “
Weather Simulation for Crop Management Models
,”
Trans. Am. Soc. Agric. Eng.
,
28
(
5
), pp.
1602
1606
.
68.
Chen
,
J. L.
, and
Li
,
G. S.
,
2013
, “
Estimation of Monthly Average Daily Solar Radiation From Measured Meteorological Data in Yangtze River Basin in China
,”
Int. J. Climatol.
,
33
(
2
), pp.
487
498
.
69.
Hunt
,
L. A.
,
Kuchar
,
L.
, and
Swanton
,
C. J.
,
1998
, “
Estimation of Solar Radiation for Use in Crop Modelling
,”
Agric. For. Meteorol.
,
91
(
3–4
), pp.
293
300
.
70.
Clemence
,
B. S. E.
,
1992
, “
An Attempt at Estimating Solar Radiation at South African Sites Which Measure Air Temperature Only
,”
S. Afr. J. Plant Soil
,
9
(
1
), pp.
40
42
.
71.
Ozoegwu
,
C. G.
,
2018
, “
New Temperature-Based Models for Reliable Prediction of Monthly Mean Daily Global Solar Radiation
,”
J. Renew. Sustain. Energy
,
10
(
2
), p.
023706
.
72.
De Souza
,
K.
,
2018
, “
Improved Accuracy Over Established Temperature-Based Models of Estimating Monthly Average Daily Global Solar Irradiation by Using Ambient Hourly Temperature Only
,”
J. Renew. Sustain. Energy
,
10
(
4
), p.
043703
.
73.
Li
,
H.
,
Cao
,
F.
,
Wang
,
X.
, and
Ma
,
W.
,
2014
, “
A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China
,”
Sci. World J.
,
2014
, p.
128754
.
74.
Okonkwo
,
G. N.
, and
Nwokoye
,
A. O. C.
,
2014
, “
Estimating Global Solar Radiation From Temperature Data in Minna Location
,”
Eur. Sci. J.
,
10
(
15
), pp.
254
264
.
75.
Li
,
M. F.
,
Liu
,
H. B.
,
Guo
,
P. T.
, and
Wu
,
W.
,
2010
, “
Estimation of Daily Solar Radiation From Routinely Observed Meteorological Data in Chongqing, China
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2575
2579
.
76.
Almorox
,
J.
,
Bocco
,
M.
, and
Willington
,
E.
,
2013
, “
Estimation of Daily Global Solar Radiation From Measured Temperatures at Cañada de Luque, Córdoba, Argentina
,”
Renew. Energy
,
60
, pp.
382
387
.
77.
Okundamiya
,
M. S.
, and
Nzeako
,
A. N.
,
2011
, “
Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria
,”
J. Control Sci. Eng.
,
2011
(
1
), p.
356406
.
78.
Akpabio
,
L. E.
,
Udo
,
S. O.
, and
Etuk
,
S. E.
,
2004
, “
Empirical Correlations of Global Solar Radiation With Meteorological Data for Onne, Nigeria
,”
Turk. J. Phys.
,
28
(
3
), pp.
205
212
.
79.
Prescott
,
J. A.
,
1940
, “
Evaporation From Water Surface in Relation to Solar Radiation
,”
Trans. R. Soc. S. Aust.
,
64
, pp.
114
118
.
80.
Bahel
,
V.
,
Bakhsh
,
H.
, and
Srinivasan
,
R.
,
1987
, “
A Correlation for Estimation of Global Solar Radiation
,”
Energy
,
12
(
2
), pp.
131
135
.
81.
Newland
,
F. J.
,
1989
, “
A Study of Solar Radiation Models for the Coastal Region of South China
,”
Sol. Energy
,
43
(
4
), pp.
227
235
.
82.
Almorox
,
J.
, and
Hontoria
,
C.
,
2004
, “
Global Solar Radiation Estimation Using Sunshine Duration in Spain
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1529
1535
.
83.
Alvi
,
S. H.
, and
Elagib
,
N. A.
,
1995
, “
Estimation of Solar Radiation for the Republic of Sudan
,”
Int. J. Ambient Energy
,
16
(
2
), pp.
67
95
.
84.
Lewis
,
G.
,
1983
, “
Estimates of Irradiance Over Zimbabwe
,”
Sol. Energy
,
31
(
6
), pp.
609
612
.
85.
Li
,
M. F.
,
Tang
,
X. P.
,
Wu
,
W.
, and
Liu
,
H. B.
,
2013
, “
General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China
,”
Energy Convers. Manage.
,
70
, pp.
139
148
.
86.
Lee
,
K. H.
,
2015
, “
Improving the Correlation Between Incoming Solar Radiation and Sunshine Hour Using DTR
,”
Int. J. Climatol.
,
35
(
3
), pp.
361
374
.
87.
Saffaripour
,
M. H.
,
Mehrabian
,
M. A.
, and
Bazargan
,
H.
,
2013
, “
Predicting Solar Radiation Fluxes for Solar Energy System Applications
,”
Int. J. Environ. Sci. Technol.
,
10
(
4
), pp.
761
768
.
88.
Falayi
,
E. O.
,
Adepitan
,
J. O.
, and
Rabiu
,
A. B.
,
2008
, “
Empirical Models for the Correlation of Global Solar Radiation With Meteorological Data for Iseyin, Nigeria
,”
Int. J. Phys. Sci.
,
3
(
9
), pp.
210
216
.
89.
Mubiru
,
J.
,
Banda
,
E. J. K. B.
,
D’Ujanga
,
F.
, and
Senyonga
,
T.
,
2007
, “
Assessing the Performance of Global Solar Radiation Empirical Formulations in Kampala, Uganda
,”
Theor. Appl. Climatol.
,
87
(
1–4
), pp.
179
184
.
90.
Kolebaje
,
O. T.
,
Ikusika
,
A.
, and
Akinyemi
,
P.
,
2016
, “
Estimating Solar Radiation in Ikeja and Port Harcourt Via Correlation With Relative Humidity and Temperature
,”
Int. J. Energy Product. Manage.
,
1
(
3
), pp.
253
262
.
91.
Li
,
H.
,
Cao
,
F.
,
Bu
,
X.
, and
Zhao
,
L.
,
2015
, “
Models for Calculating Daily Global Solar Radiation From Air Temperature in Humid Regions—A Case Study
,”
Environ. Prog. Sustain. Energy
,
34
(
2
), pp.
595
599
.
92.
Yıldırım
,
H. B.
,
Teke
,
A.
, and
Antonanzas-Torres
,
F.
,
2018
, “
Evaluation of Classical Parametric Models for Estimating Solar Radiation in the Eastern Mediterranean Region of Turkey
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
2053
2065
.
93.
Onyango
,
F. N.
,
1983
, “
On the Estimation of Global Solar Insolation
,”
Sol. Energy
,
31
(
1
), pp.
69
71
.
94.
Al-Salaymeh
,
A.
,
2006
, “
Modelling of Global Daily Solar Radiation on Horizontal Surfaces for Amman City
,”
Emir. J. Eng. Res.
,
11
(
1
), pp.
49
56
.
95.
Quej
,
V. H.
,
Almorox
,
J.
,
Ibrakhimov
,
M.
, and
Saito
,
L.
,
2017
, “
Estimating Daily Global Solar Radiation by Day of the Year in Six Cities Located in the Yucatán Peninsula, Mexico
,”
J. Cleaner Prod.
,
141
, pp.
75
82
.
96.
Kaplanis
,
S.
, and
Kaplani
,
E.
,
2007
, “
A Model to Predict Expected Mean and Stochastic Hourly Global Solar Radiation I(h;Nj) Values
,”
Renew. Energy
,
32
(
8
), pp.
1414
1425
.
97.
Zang
,
H.
,
Xu
,
Q.
, and
Bian
,
H.
,
2012
, “
Generation of Typical Solar Radiation Data for Different Climates of China
,”
Energy
,
38
(
1
), pp.
236
248
.
98.
Li
,
H.
,
Ma
,
W.
,
Lian
,
Y.
, and
Wang
,
X.
,
2010
, “
Estimating Daily Global Solar Radiation by Day of Year in China
,”
Appl. Energy
,
87
(
10
), pp.
3011
3017
.
You do not currently have access to this content.