Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study investigates the mutual thermal interactions between buildings and the microclimate within urban area centers. Buildings are the primary energy consumers in cities, and one of the main causes of the urban heat island (UHI) formation. In this article, a flexible simulation environment is developed and used to model the mutual thermal interactions between building energy systems and their urban surroundings in Phoenix, AZ, characterized by its hot climate. The impacts of various operating strategies for both commercial and residential buildings are assessed on both UHI effects and energy consumption. Specifically, the study evaluates the impacts of indoor temperature settings, precooling strategies, and air infiltration/exfiltration rates. It has been found that heat rejected by air conditioning systems significantly impacts UHI formation in urban centers located in hot climates. Specifically, commercial buildings were found to cause more UHI effects than residential buildings due to higher cooling loads. The impacts of heat rejected from heating, ventilating, and air conditioning (HVAC) systems are found to be more dominant than that from air exfiltration on the microclimate of urban centers. For urban center made up of commercial buildings with a street aspect ratio of 2, heat from air exfiltration is estimated to be as low as 10% of the heat rejected by HVAC systems.

References

1.
Baklanov
,
A.
,
Lawrence
,
S.
,
Pandis
,
S.
,
Mahura
,
A.
,
Finardi
,
S.
,
Moussiopoulos
,
N.
,
Beekmann
,
M.
, et al
,
2010
, “
MEGAPOLI: Concept of Multi-Scale Modelling of Megacity Impact on Air Quality and Climate
,”
Adv. Sci. Res.
,
4
(
1
), pp.
115
120
.
2.
UN-HABITAT
,
2012
, “
State of the World’s Cites 2012/2013: United Nations Human Settlements Programme
,”
United Nations Human Settlements Programme
,
Nairobi, Kenya
, p.
152
.
3.
Madlener
,
R.
, and
Sunak
,
Y.
,
2011
, “
Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management?
,”
Sustain. Cities Soc.
,
1
(
1
), pp.
45
53
.
4.
Imhoff
,
M. L.
,
Zhang
,
P.
,
Wolfe
,
R. E.
, and
Bounoua
,
L.
,
2010
, “
Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA
,”
Remote Sens. Environ.
,
114
(
3
), pp.
504
513
.
5.
Mirzaei
,
P. A.
, and
Haghighat
,
F.
,
2010
, “
Approaches to Study Urban Heat Island—Abilities and Limitations
,”
Build. Environ.
,
45
(
10
), pp.
2192
2201
.
6.
Kalkstein
,
L. S.
, and
Davis
,
R. E.
,
1989
, “
Weather and Human Mortality: An Evaluation of Demographic and Interregional Responses in the United States
,”
Ann. Assoc. Am. Geogr.
,
79
(
1
), pp.
44
64
.
7.
Thorsson
,
S.
,
Lindberg
,
F.
,
Björklund
,
J.
,
Holmer
,
B.
, and
Rayner
,
D.
,
2011
, “
Potential Changes in Outdoor Thermal Comfort Conditions in Gothenburg, Sweden Due to Climate Change: The Influence of Urban Geometry
,”
Int. J. Climatol.
,
31
(
2
), pp.
324
335
.
8.
Ohashi
,
Y.
,
Ihara
,
T.
,
Kikegawa
,
Y.
, and
Sugiyama
,
N.
,
2016
, “
Numerical Simulations of Influence of Heat Island Countermeasures on Outdoor Human Heat Stress in the 23 Wards of Tokyo, Japan
,”
Energy Build.
,
114
, pp.
104
111
.
9.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2011
, “
Combining a Detailed Building Energy Model With a Physically-Based Urban Canopy Model
,”
Boundary-Layer Meteorol.
,
140
(
3
), pp.
471
489
.
10.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Wang
,
M.
,
2014
, “
Anthropogenic Heating of the Urban Environment Due to Air Conditioning
,”
J. Geophys. Res. Atmos.
,
119
(
10
), pp.
5949
5965
.
11.
Gago
,
E. J.
,
Roldan
,
J.
,
Pacheco-Torres
,
R.
, and
Ordóñez
,
J.
,
2013
, “
The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects
,”
Renew. Sustain. Energy Rev.
,
25
, pp.
749
758
.
12.
Mirzaei
,
P. A.
,
2015
, “
Recent Challenges in Modelling of Urban Heat Island
,”
Sustain. Cities Soc.
,
19
, pp.
200
206
.
13.
Bernabé
,
A.
,
Musy
,
M.
,
Andrieu
,
H.
, and
Calmet
,
I.
,
2015
, “
Radiative Properties of the Urban Fabric Derived From Surface Form Analysis: A Simplified Solar Balance Model
,”
Sol. Energy
,
122
, pp.
156
168
.
14.
Kuttler
,
W.
,
2008
, “The Urban Climate—Basic and Applied Aspects,”
Urban Ecology: An International Perspective on the Interaction Between Humans and Nature
,
J. M.
Marzluff
,
E.
Schulenberger
,
W.
Endlicher
, et al
, eds.,
Springer
,
New York
, pp.
233
248
.
15.
Quah
,
A. K. L.
, and
Roth
,
M.
,
2012
, “
Diurnal and Weekly Variation of Anthropogenic Heat Emissions in a Tropical City, Singapore
,”
Atmos. Environ.
,
46
, pp.
92
103
.
16.
Zhang
,
G. J.
,
Cai
,
M.
, and
Hu
,
A.
,
2013
, “
Energy Consumption and the Unexplained Winter Warming Over Northern Asia and North America
,”
Nat. Clim. Chang.
,
3
(
5
), pp.
466
470
.
17.
Coseo
,
P.
, and
Larsen
,
L.
,
2014
, “
How Factors of Land Use/Land Cover, Building Configuration, and Adjacent Heat Sources and Sinks Explain Urban Heat Islands in Chicago
,”
Landsc. Urban Plan.
,
125
, pp.
117
129
.
18.
Sailor
,
D. J.
,
2011
, “
A Review of Methods for Estimating Anthropogenic Heat and Moisture Emissions in the Urban Environment
,”
Int. J. Climatol.
,
31
(
2
), pp.
189
199
.
19.
Bueno
,
B.
,
Norford
,
L.
,
Pigeon
,
G.
, and
Britter
,
R.
,
2012
, “
A Resistance-Capacitance Network Model for the Analysis of the Interactions Between the Energy Performance of Buildings and the Urban Climate
,”
Build. Environ.
,
54
, pp.
116
125
.
20.
De Munck
,
C.
,
Pigeon
,
G.
,
Masson
,
V.
,
Meunier
,
F.
,
Bousquet
,
P.
,
Tremeac
,
B.
,
Merchat
,
M.
,
Poeuf
,
P.
, and
Marchadier
,
C.
,
2013
, “
How Much Can Air Conditioning Increase Air Temperatures for a City Like Paris, France?
,”
Int. J. Climatol.
,
33
(
1
), pp.
210
227
.
21.
Chow
,
W. T. L.
,
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Milne
,
J. M.
, and
Ruddell
,
B. L.
,
2014
, “
A Multi-Method and Multi-Scale Approach for Estimating City-Wide Anthropogenic Heat Fluxes
,”
Atmos. Environ.
,
99
, pp.
64
76
.
22.
Ameer
,
B.
, and
Krarti
,
M.
,
2022
, “
Review of Urban Heat Island and Building Energy Modeling Approaches
,”
ASME J. Eng. Sustain. Build. Cities
,
3
(
1
), p.
16
.
23.
Bueno
,
B.
,
Norford
,
L.
,
Hidalgo
,
J.
, and
Pigeon
,
G.
,
2013
, “
The Urban Weather Generator
,”
J. Build. Perform. Simul.
,
6
(
4
), pp.
269
281
.
24.
Ahmad
,
A.
,
2004
, “
Energy Simulation for a Typical House Built With Different Types of Masonry Building Materials
,”
Arab. J. Sci. Eng.
,
29
(
2
), pp.
113
126
.
25.
Al-Ragom
,
F.
,
2003
, “
Retrofitting Residential Buildings in Hot and Arid Climates
,”
Energy Convers. Manag.
,
44
(
14
), pp.
2309
2319
.
26.
Alaidroos
,
A.
, and
Krarti
,
M.
,
Jan. 2015
, “
Optimal Design of Residential Building Envelope Systems in the Kingdom of Saudi Arabia
,”
Energy Build.
,
86
, pp.
104
117
.
27.
Al-Homoud
,
M. S.
,
2004
, “
The Effectiveness of Thermal Insulation in Different Types of Buildings in Hot Climates
,”
J. Therm. Envel. Build. Sci.
,
27
(
3
), pp.
235
247
.
28.
Al-saadi
,
S. N.
, and
Budaiwi
,
I. M.
,
2007
, “
Performance-Based Envelope Design for Residential Buildings in Hot Climates SAAD Group, Design Office, AL-Khobar 31952, P. O. Box 3250, Saudi Arabia Architectural Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 3126
,”
Build. Simul.
,
2007
, pp.
1726
1733
.
29.
Ameer
,
B.
, and
Krarti
,
M.
,
2016
, “
Impact of Subsidization on High Energy Performance Designs for Kuwaiti Residential Buildings
,”
Energy Build.
,
116
, pp.
249
262
.
30.
Duarte
,
D. H. S.
,
Shinzato
,
P.
,
dos
,
C.
,
Gusson
,
S.
, and
Alves
,
C. A.
,
2015
, “
The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate
,”
Urban Clim.
,
14
, pp.
224
239
.
31.
Quan
,
S. J.
,
Wu
,
J.
,
Wang
,
Y.
,
Shi
,
Z.
,
Yang
,
T.
, and
Yang
,
P. P.-J.
,
2016
, “
Urban Form and Building Energy Performance in Shanghai Neighborhoods
,”
Energy Proc.
,
88
, pp.
126
132
.
32.
Targhi
,
M. Z.
, and
Van Dessel
,
S.
,
2015
, “
Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA
,”
Proc. Eng.
,
118
, pp.
1153
1161
.
33.
Tanimoto
,
J.
,
Hagishima
,
A.
, and
Chimklai
,
P.
,
2004
, “
An Approach for Coupled Simulation of Building Thermal Effects and Urban Climatology
,”
Energy Build.
,
36
(
8
), pp.
781
793
.
34.
Pigeon
,
G.
,
Zibouche
,
K.
,
Bueno
,
B.
,
Le Bras
,
J.
, and
Masson
,
V.
,
2014
, “
Improving the Capabilities of the Town Energy Balance Model With Up-to-Date Building Energy Simulation Algorithms: An Application to a Set of Representative Buildings in Paris
,”
Energy Build.
,
76
, pp.
1
14
.
35.
Gros
,
A.
,
Bozonnet
,
E.
, and
Inard
,
C.
,
2014
, “
Cool Materials Impact at District Scale—Coupling Building Energy and Microclimate Models
,”
Sustain. Cities Soc.
,
13
, pp.
254
266
.
36.
C. F.
Reinhart
,
T.
Dogan
,
J. A.
Jakubiec
,
T.
Rakha
, and
A.
Sang
,
2013
, “
Umi—An Urban Simulation Environment for Building Energy Use, Daylighting and Walkability
,” Proceedings of
BS2013 13th Conference of International Building Performance Simulation Association
,
Chambery, France
,
Aug. 25–28
, pp.
476
483
.
37.
Lobaccaro
,
G.
,
Fiorito
,
F.
,
Masera
,
G.
, and
Poli
,
T.
,
2012
, “
District Geometry Simulation: A Study for the Optimization of Solar Facades in Urban Canopy Layers
,”
Energy Proc.
,
30
, pp.
1163
1172
.
38.
Gracik
,
S.
,
Heidarinejad
,
M.
,
Liu
,
J.
, and
Srebric
,
J.
,
2015
, “
Effect of Urban Neighborhoods on the Performance of Building Cooling Systems
,”
Build. Environ.
,
90
, pp.
15
29
.
39.
Robinson
,
D.
,
Campbell
,
N.
,
Gaiser
,
W.
,
Kabel
,
K.
,
Le-Mouel
,
A.
,
Morel
,
N.
,
Page
,
J.
,
Stankovic
,
S.
, and
Stone
,
A.
,
2007
, “
SUNTool—A new Modelling Paradigm for Simulating and Optimising Urban Sustainability
,”
Sol. Energy
,
81
(
9
), pp.
1196
1211
.
40.
Salamanca
,
F.
, and
Martilli
,
A.
,
2010
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations—Part II. Validation With One Dimension Off-Line Simulations
,”
Theor. Appl. Climatol.
,
99
(
3–4
), pp.
345
356
.
41.
Ameer
,
B.
, and
Krarti
,
M.
,
2023
, “
Development of a Simulation Environment for Designing and Retrofitting Sustainable Buildings in Urban Centers
,”
ASME J. Eng. Build. Cities.
,
5
(
3
), pp.
1
15
.
42.
Robinson
,
D.
, and
Stone
,
A.
,
2005
, “
A Simplified Radiosity Algorithm for General Urban Radiation Exchange
,”
Build. Serv. Eng. Res. Technol.
,
26
(
4
), pp.
271
284
.
43.
Robinson
,
D.
, and
Stone
,
A.
,
2004
, “
Solar Radiation Modelling in the Urban Context
,”
Sol. Energy
,
77
(
3
), pp.
295
309
.
44.
Park
,
B.
,
Srubar
,
W. V.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
.
45.
ASHRAE
, “
Preview ASHRAE Standards and Guidelines
,” https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards, Accessed September 15, 2022.
46.
Bueno
,
B.
,
Hidalgo
,
J.
,
Pigeon
,
G.
,
Norford
,
L.
, and
Masson
,
V.
,
2013
, “
Calculation of Air Temperatures Above the Urban Canopy Layer From Measurements at a Rural Operational Weather Station
,”
J. Appl. Meteorol. Climatol.
,
52
(
2
), pp.
472
483
.
47.
Shi
,
H.
, and
Chen
,
Q.
,
2021
, “
Building Energy Management Decision-Making in the Real World: A Comparative Study of HVAC Cooling Strategies
,”
J. Build. Eng.
,
33
, p.
101869
.
48.
Yin
,
R.
,
Xu
,
P.
,
Piette
,
M. A.
, and
Kiliccote
,
S.
,
2010
, “
Study on Auto-DR and Pre-Cooling of Commercial Buildings With Thermal Mass in California
,”
Energy Build.
,
42
(
7
), pp.
967
975
.
49.
Herb
,
W. R.
,
Janke
,
B.
,
Mohseni
,
O.
, and
Stefan
,
H. G.
,
2008
, “
Ground Surface Temperature Simulation for Different Land Covers
,”
J. Hydrol.
,
356
(
3–4
), pp.
327
343
.
50.
Klein
,
S. A.
,
1977
, “
Review Paper. Calculation of Monthly Average Insolation on Tilted Surfaces
,”
Sol. Energy
,
19
(
4
), pp.
325
329
.
51.
Perez
,
R.
,
Seals
,
R.
, and
Michalsky
,
J.
,
1993
, “
All-Weather Model for Sky Luminance Distribution-Preliminary Configuration and Validation
,”
Sol. Energy
,
50
(
3
), pp.
235
245
.
52.
Igawa
,
N.
,
Koga
,
Y.
,
Matsuzawa
,
T.
, and
Nakamura
,
H.
,
2004
, “
Models of Sky Radiance Distribution and Sky Luminance Distribution
,”
Sol. Energy
,
77
(
2
), pp.
137
157
.
53.
King
,
D. L.
,
Kratochvil
,
J. A.
, and
Boyson
,
W. E.
,
2004
, “
Photovoltaic Array Performance Model
,” United States Department of Energy, Sandia National Lab. (SNL-NM), Albuquerque, NM, Vol. 8, pp.
1
19
.
54.
Riley
,
D. M.
,
Hansen
,
C. W.
, and
Farr
,
M.
,
2015
, “
A Performance Model for Photovoltaic Modules With Integrated Microinverters (No. SAND-2015-0179)
,” Sandia National Lab. (SNL-NM), Albuquerque, NM.
55.
Aly
,
S. P.
,
Ahzi
,
S.
,
Barth
,
N.
, and
Abdallah
,
A.
,
2018
, “
Using Energy Balance Method to Study the Thermal Behavior of PV Panels Under Time-Varying Field Conditions
,”
Energy Convers. Manag.
,
175
, pp.
246
262
.
56.
Sandia National Laboratories
, “
PV Performance Modeling Collaborative
,” https://pvpmc.sandia.gov/applications/, Sandia National Laboratories, Albuquerque, NM, Accessed October 1, 2022.
57.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
, 3rd ed.,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.