Abstract

The use of phase-change materials (PCMs) in asphalt mixture is expected to solve some problems related to asphalt-pavement temperature, such as rutting behaviors and urban heat island effect. This study mainly evaluated the thermal and mechanical properties of asphalt mixtures with and without various PCMs (PCM-L, PCM-Z) using laboratory performance tests. The experimental tests included thermal conductivity and diffusivity, volumetric heat capacity, indoor temperature changes versus time when heated or cooled, indirect tensile strength, high-temperature rutting, and low-temperature cracking. In addition, a hot disk thermal constants analyzer was used to measure the thermal constants of asphalt mixtures. The results showed that different PCMs had different effects on the thermal constants of asphalt mixtures. Compared with control sample, the sample with PCM-L showed a higher thermal conductivity, whereas the sample with PCM-Z had a lower thermal conductivity. Moreover, PCM-Z exhibited a more-significant phase-change adjusting-temperature effect on asphalt mixtures than PCM-L. However, the addition of PCM to asphalt mixtures resulted in a decreased indirect tensile strength and a weakened rutting resistance, but the effect of PCM-Z was smaller than that of PCM-L. In addition, the asphalt mixture with PCM-Z exhibited better cracking resistance than the mixture with PCM-L and control mixture. Therefore, it is recommended to use PCM-Z in asphalt mixtures to solve the problem of pavement at high temperatures.

References

1.
Azizian
,
M.
,
Nelson
,
P.
, and
Thayumanavan
,
P.
, “
Environmental Impact of Highway Construction and Repair Materials on Surface and Ground Waters: Case Study: Crumb Rubber Asphalt Concrete
,”
Waste Manage.
, Vol.
23
,
2003
, pp.
719
728
. https://doi.org/10.1016/S0956-053X(03)00024-2
2.
Santamouris
,
M.
,
Synnefa
,
A.
, and
Karlessi
,
T.
, “
Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions
,”
Solar Energy
, Vol.
85
,
2011
, pp.
3085
3102
. https://doi.org/10.1016/j.solener.2010.12.023
3.
Harrington
,
W. Z.
,
Stohschein
,
B. L.
,
Reedy
,
D.
,
Harrington
,
J. E.
, and
Schiller
,
W. R.
, “
Pavement Temperature and Burns: Street of Fire
,”
Ann. Emerg. Med.
, Vol.
26
, No.
5
,
1995
, pp.
563
568
. https://doi.org/10.1016/S0196-0644(95)70005-6
4.
EPA,
2009
, “
Reducing Urban Heat Islands: Compendium of Strategies Cool Pavements
,” http://www.epa.gov/hiri/resources/compendium.htm (Last accessed February 16,
2012
).
5.
Mallick
,
R. B.
,
Chen
,
B. L.
, and
Bhowmick
,
S.
, “
Harvesting Energy from Asphalt Pavements and Reducing the Heat Island Effect
,”
Int. J. Sustain. Eng.
, Vol.
2
, No.
3
,
2009
, pp.
214
228
. https://doi.org/10.1080/19397030903121950
6.
Synnefa
,
A.
,
Dandou
,
A.
,
Santamouris
,
M.
, and
Tombrou
,
M.
, “
On the Use of Cool Materials as a Heat Island Mitigation Strategy
,”
J. Appl. Meteorol. Climatol.
, Vol.
47
,
2008
, pp.
2846
2856
. https://doi.org/10.1175/2008JAMC1830.1
7.
Belen
,
Z.
,
Jose
,
M.
, and
Luisa
,
F.
, “
Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Thermal Eng.
, Vol.
23
,
2003
, pp.
251
283
. https://doi.org/10.1016/S1359-4311(02)00192-8
8.
Castell
,
A.
,
Martorell
,
I.
,
Medrano
,
M.
, and
Perez
,
G.
, “
Experimental Study of Using PCM in Brick Constructive Solutions for Passive Cooling
,”
Energy Build.
, Vol.
42
,
2010
, pp.
534
540
. https://doi.org/10.1016/j.enbuild.2009.10.022
9.
Medinna
,
M.
,
Kingb
,
J.
, and
Zhang
,
M.
, “
On the Heat Transfer Rate Reduction of Structural Insulated Panels (SIPs) Outfitted with Phase Change Materials (PCMs)
,”
Energy
, Vol.
33
,
2008
, pp.
667
678
. https://doi.org/10.1016/j.energy.2007.11.003
10.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
, “
Review on Thermal Energy Storage with Phase Change Materials and Applications
,”
Renew. Sustain. Energy Rev.
, Vol.
13
,
2009
, pp.
318
345
. https://doi.org/10.1016/j.rser.2007.10.005
11.
Cocu
,
X.
,
Nicaise
,
D.
, and
Rachidi
,
S.
, “
The Use of Phase Change Materials to Delay Pavement Freezing
,”
Transport Research Arena (TRA) 2010-Thematic Session 11: New Materials
.
12.
Ma
,
B.
,
Wang
,
S.
, and
Li
,
J.
, “
Study on Application of PCM in Asphalt Mixture
,”
Adv. Mater. Res.
, Vol.
168–170
,
2010
, pp.
2625
2630
. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2625
13.
Karlessi
,
T.
,
Santamouris
,
M.
,
Synnefa
,
A.
,
Assimakopoulos
,
D.
,
Didaskalopoulos
,
P.
, and
Apostolakis
,
K.
, “
Development and Testing of PCM Doped Cool Colored Coatings to Mitigate Urban Heat Island and Cool Buildings
,”
Build. Environ.
, Vol.
46
,
2011
, pp.
570
576
. https://doi.org/10.1016/j.buildenv.2010.09.003
14.
Chen
,
M. Z.
,
Wan
,
L.
, and
Wu
,
S. P.
, “
Effect of Phase Change Material on Temperature Susceptibility of Asphalt
,”
3rd International Conference on Heterogeneous Material Mechanics
,
2011
, pp.
576
578
.
15.
Chen
,
M. Z.
,
Hong
,
J.
, and
Wu
,
S. P.
, “
Optimization of Phase Change Materials Used in Asphalt Pavement to Prevent Rutting
,”
Adv. Mater. Res.
, Vol.
219–220
,
2011
, pp.
1375
1378
.
16.
Guan
,
B.
,
Ma
,
B.
, and
Qin
,
F.
, “
Application of Asphalt Pavement with Phase Change Materials to Mitigate Urban Heat Island Effect
,”
Water Resource and Environmental Protection (ISWREP) 2011 International Symposium
, Vol.
3
, pp.
2389
2392
.
17.
Xu
,
Q.
and
Solaimanian
,
M.
, “
Modeling Temperature Distribution and Thermal Property of Asphalt Concrete for Laboratory Testing Applications
,”
Construct. Build. Mater..
No.
24
,
2010
, pp.
487
497
. https://doi.org/10.1016/j.conbuildmat.2009.10.013
18.
Wu
,
S. P.
,
Qiu
,
J.
, and
Mo
,
L. T.
, “
Investigation of Temperature Characteristics of Recycled Hot Mix Asphalt Mixtures
,”
Res., Conserv. Recycl.
, Vol.
51
,
2007
, pp.
610
620
. https://doi.org/10.1016/j.resconrec.2006.11.005
19.
Wu
,
S. P.
,
Chen
,
M. Y.
, and
Zhang
,
J. Z.
, “
Laboratory Investigation into Thermal Response of Asphalt Pavements as Solar Collector by Application of Small-Scale Slabs
,”
Appl. Thermal Eng.
, Vol.
31
,
2011
, pp.
1582
1587
. https://doi.org/10.1016/j.applthermaleng.2011.01.028
20.
ISO/DIS 22007-2.2,
2008
, “
Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disk) Method.
21.
Arabani
,
M.
,
Mirabdolazimi
,
S. M.
, and
Sasani
,
A. R.
, “
The Effect of Waste Tire Thread Mesh on the Dynamic Behaviors of Asphalt Mixtures
,”
Construct. Build. Mater.
, Vol.
24
,
2010
, pp.
1060
1068
. https://doi.org/10.1016/j.conbuildmat.2009.11.011
22.
Huang
,
B. S.
,
Li
,
G. Q.
, and
Mohammad
,
L. N.
, “
Analytical Modeling and Experimental Study of Tensile Strength of Asphalt Concrete Composite at Low Temperatures
,”
Comp.: Part B
,
34
,
2003
, pp.
705
714
. https://doi.org/10.1016/S1359-8368(03)00079-9
23.
Tayfur
,
S.
,
Ozen
,
H.
, and
Aksoy
,
A.
, “
Investigation of Rutting Performance of Asphalt Mixtures Containing Polymer Modifiers
,”
Construct. Build. Mater.
, Vol.
21
,
2007
, pp.
328
337
. https://doi.org/10.1016/j.conbuildmat.2005.08.014
24.
Tasdemir
,
Y.
, “
High Temperature Properties of Wax Modified Binders and Asphalt Mixtures
,”
Construct. Build. Mater.
, Vol.
23
,
2009
, pp.
3220
3224
. https://doi.org/10.1016/j.conbuildmat.2009.06.010
25.
Prabir
,
K. D.
,
Yuksel
,
T.
, and
Bjorn
,
B.
, “
Low Temperature Cracking Performance of WMA with the Use of the Superpave Indirect Tensile Test
,”
Construct. Build. Mater.
, Vol.
30
,
2012
, pp.
643
649
. https://doi.org/10.1016/j.conbuildmat.2011.12.013
26.
Mun
,
S.
and
Lee
,
S.
, “
Determination of the Fatigue-Cracking Resistance of Asphalt Concrete Mixtures at Low Temperatures
,”
Cold Regions Sci. Technol.
, Vol.
61
,
2010
, pp.
116
124
. https://doi.org/10.1016/j.coldregions.2010.02.003
This content is only available via PDF.
You do not currently have access to this content.