Abstract

In the present research, a sub-scale specimen geometry was proposed for the determination of the tensile strength of polymers. Tensile strength of an aerospace epoxy (8552) was measured at various temperatures using the proposed testing approach and the measured data were compared to data measured using standard-size specimens. According to the experimental data, greater strengths were obtained using sub-scale specimens. This phenomenon was related to the lower probability of having larger flaws in smaller-size specimens. In addition, a creep-rupture master curve for the polymer was obtained by shifting strengths measured at various temperatures, according to an accelerated testing methodology (ATM) based on the time–temperature superposition principle. Ultimately, the proposed sub-scale testing approach may prove feasible for determining tensile strength and the long-term creep strength of a polymer using standard laboratory dynamic mechanical analysis (DMA) equipment.

References

1.
ASTM D2990-09:
Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
2.
Gates
,
T. S.
,
Veazie
,
D. R.
, and
Brinson
,
L. C.
, “
Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compression
,”
J. Compos. Mater.
, Vol.
31
, No.
24
,
1997
, pp.
2478
2505
. https://doi.org/10.1177/002199839703102404
3.
Bank
,
L. C.
,
Gentry
,
T. R.
, and
Barkatt
,
A.
, “
Accelerated Test Methods to Determine the Long-Term Behavior of FRP Composite Structures: Environmental Effects
,”
J. Reinf. Plast. Compos.
, Vol.
14
,
1995
, pp.
559
587
.
4.
Arao
,
Y.
,
Yukie
,
O.
,
Koyanagi
,
J.
,
Takeda
,
S.-I.
, and
Kawada
,
H.
, “
Simple Method for Obtaining Viscoelastic Parameters of Polymeric Materials by Incorporating Physical-Aging Effects
,”
Mech. Time-Depend. Mater.
, Vol.
16
, No.
2
,
2012
, pp.
169
180
. https://doi.org/10.1007/s11043-011-9143-z
5.
Davalos
,
J. F.
,
Chen
,
Y.
, and
Ray
,
I.
, “
Long-Term Durability Prediction Models for GFRP Bars in Concrete Environment
,”
J. Compos. Mater.
, Vol.
46
, No.
16
,
2012
, pp.
1899
1914
. https://doi.org/10.1177/0021998311427777
6.
Miyano
,
Y.
,
Nakada
,
M.
, and
Cai
,
H.
, “
Formulation of Long-term Creep and Fatigue Strengths of Polymer Composites Based on Accelerated Testing Methodology
,”
J. Compos. Mater.
, Vol.
42
, No.
18
,
2008
, pp.
1897
1919
. https://doi.org/10.1177/0021998308093913
7.
Cai
,
H.
,
Miyano
,
Y.
,
Nakada
,
M.
, and
Ha
,
S. K.
, “
Long-Term Fatigue Strength Prediction of CFRP Structure Based on Micromechanics of Failure
,”
J. Compos. Mater.
, Vol.
42
, No.
8
,
2008
, pp.
825
844
. https://doi.org/10.1177/0021998307088611
8.
Ha
,
S. K.
,
Jin
,
K. K.
, and
Huang
,
Y.
, “
Life Prediction of Composites Using MMF and ATM
,”
Strength and Life of Composites
, 2nd ed.,
Melo
J. D. D.
and
Ha
S. K.
, Eds.,
Stanford University
,
Stanford, CA
,
2011
.
9.
Melo
,
J. D. D.
and
Radford
,
D. W.
, “
Viscoelastic Properties of PEEK-IM7 Related to Temperature
,”
J. Reinf. Plast. Compos.
, Vol.
24
, No.
5
,
2005
, pp.
545
556
. https://doi.org/10.1177/0731684405045019
10.
Melo
,
J. D. D.
and
Radford
,
D. W.
, “
Time and Temperature Dependence of the Viscoelastic Properties of CFRP by Dynamic Mechanical Analysis
,”
Compos. Struct.
, Vol.
70
, No.
2
,
2005
, pp.
240
253
. https://doi.org/10.1016/j.compstruct.2004.08.025
11.
Melo
,
J. D. D.
and
Radford
,
D. W.
, “
Time and Temperature Dependence of the Viscoelastic Properties of PEEK/IM7
,”
J. Compos. Mater.
, Vol.
38
, No.
20
,
2004
, pp.
1815
1830
. https://doi.org/10.1177/0021998304044770
12.
Menard
,
K. P.
,
Dynamic Mechanical Analysis—A Practical Introduction
, 1st ed.,
CRC
,
Boca Raton, FL
,
1999
.
13.
ASTM D638-10:
Standard Test Method for Tensile Properties of Plastics
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
14.
Miyano
,
Y.
,
Nakada
,
M.
,
McMurray
,
M. K.
, and
Muki
,
R.
, “
Prediction of Flexural Fatigue Strength of CFRP Composites under Arbitrary Frequency, Stress Ratio and Temperature
,”
J. Compos. Mater.
, Vol.
31
, No.
6
,
1997
, pp.
619
638
. https://doi.org/10.1177/002199839703100605
15.
Miyano
,
Y.
,
Nakada
,
M.
, and
Muki
,
R.
, “
Applicability of Fatigue Life Prediction Method to Polymer Composites
,”
Mech. Time-Depend. Mater.
, Vol.
3
, No.
2
,
1999
, pp.
141
157
. https://doi.org/10.1023/A:1009873124095
16.
Miyano
,
Y.
,
Nakada
,
M.
,
Kudoh
,
H.
, and
Muki
,
R.
, “
Prediction of Tensile Fatigue Life under Temperature Environment for Unidirectional CFRP
,”
Adv. Compos. Mater.
, Vol.
8
, No.
3
,
1999
, pp.
235
246
. https://doi.org/10.1163/156855199X00236
17.
Freed
,
Y.
and
Rzepka
,
S.
, “
An Implementation of an Accelerated Testing Methodology to Obtain Static, Creep and Fatigue Master Curves of a T300/913 Unidirectional Composite Material
,”
ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives
,
Montreal, Canada
, June 1–3,
2011
, pp.
145
153
.
18.
Christensen
,
R.
and
Miyano
,
Y.
, “
Stress Intensity Controlled Kinetic Crack Growth and Stress History Dependent Life Prediction with Statistical Variability
,”
Int. J. Fract.
, Vol.
137
, Nos.
1–4
,
2006
, pp.
77
87
. https://doi.org/10.1007/s10704-005-9062-6
19.
Christensen
,
R.
and
Miyano
,
Y.
, “
Deterministic and Probabilistic Lifetimes from Kinetic Crack Growth-Generalized Forms
,”
Int. J. Fract.
, Vol.
143
, No.
1
,
2007
, pp.
35
39
. https://doi.org/10.1007/s10704-006-9049-y
20.
Frank
,
C. W.
,
Rao
,
V.
,
Despotopoulou
,
M. M.
,
Pease
,
R. F. W.
,
Hinsberg
,
W. D.
,
Miller
,
R. D.
, and
Rabolt
,
J. F.
, “
Structure in Thin and Ultrathin Spin-Cast Polymer Films
,”
Science
, Vol.
273
, No.
5277
,
1996
, pp.
912
915
. https://doi.org/10.1126/science.273.5277.912
21.
White
,
C. C.
and
Wu
,
W. L.
, “
A Novel Method to Determine the Mechanical Properties of Ultra-Thin Films
,”
Mater. Res. Soc. Symp. Proc.
, Vol.
511
,
1998
, pp.
177
182
. https://doi.org/10.1557/PROC-511-177
22.
Prest
,
W. M.
, Jr.
and
Luca
,
D. J.
, “
Origin of the Optical Anisotropy of Solvent Cast Polymeric Films
,”
J. Appl. Phys.
, Vol.
50
,
1979
, pp.
6067
6071
. https://doi.org/10.1063/1.325795
23.
Odom
,
E. M.
and
Adams
,
D. F.
, “
Specimen Size Effect during Tensile Testing of an Unreinforced Polymer
,”
J. Mater. Sci.
, Vol.
27
, No.
7
,
1992
, pp.
1767
1771
. https://doi.org/10.1007/BF01107202
24.
Towse
,
A.
,
Potter
,
K.
,
Wisnom
,
M. R.
, and
Adams
,
R. D.
, “
Specimen Size Effects in the Tensile Failure Strain of an Epoxy Adhesive
,”
J. Mater. Sci.
, Vol.
33
, No.
17
,
1998
, pp.
4307
4314
. https://doi.org/10.1023/A:1004487505391
25.
Hexcel Composites
, “
HexPly 8552, Epoxy Matrix (180°C/356°F Curing Matrix)
,”
Hexcel Corporation
,
Dublin, CA
.
This content is only available via PDF.
You do not currently have access to this content.