Abstract

Accumulated plastic strain in subgrade soils under repeated loading is an important factor for the design and analysis of flexible pavement. Accurate prediction of the plastic strain is dependent on the constitution of a predictive model. This study discusses the plastic strain properties in subgrade soil under repeated loading and develops a predictive model using a genetic programming (GP) method. Repeated load triaxial tests were conducted under various confining pressures, stress levels, and moisture contents. To develop the predictive model, a total of 475 records were randomly divided into three datasets (159, 158, and 158 records) for training, validation, and application purposes. The results showed that the GP method was applied successfully to develop a predictive model that uses stress level, load repetition, dry unit weight, liquid limit, plastic index, and clay content as inputs and has plastic strain as the output. The R2 values for the training, validation, and applied datasets were 0.9551, 0.9494, and 0.9489, respectively. This study demonstrates and confirms the superior performance of GP over traditional prediction methods when applied to predict plastic strain in subgrade soils. The model and algorithms proposed in this study provide a good foundation for further development when more robust datasets of other types of soils are available.

References

1.
Yang
,
S. R.
and
Huang
,
W. H.
, “
Permanent Deformation and Critical Stress of Cohesive Soil Under Repeated Loading
,”
J. Transport. Res. Board
, No.
2007
,
2016
, pp.
23
30
. https://doi.org/10.3141/2016-03
2.
Xu
,
C.
,
Chen
,
Q.
, and
Feng
,
Q.
, “
Bearing Capacity Estimation of Soil Under a Constructed Building by Rayleigh Wave Method
,”
J. Test. Eval.
, Vol.
43
, No.
2
,
2015
, pp.
376
384
. https://doi.org/10.1520/JTE20140039
3.
Majidzadeh
,
K.
,
Bayomy
,
F.
, and
Khedr
,
S.
, “
Rutting Evaluation of Subgrade Soils in Ohio
,”
J. Transport. Res. Board
, No.
671, 1978
, pp.
75
84
.
4.
Behzadi
,
G.
and
Yandell
,
W. O.
, “
Determination of Elastic and Plastic Subgrade Soil Parameters for Asphalt Cracking and Rutting Prediction
,”
J. Transport. Res. Board
, No. 1540,
1996
, pp.
97
104
.
5.
Koza
,
J. R.
,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,
MIT Press
,
Cambridge, MA
,
1992
.
6.
Davidson
,
J. W.
,
Savic
,
D. A.
, and
Walters
,
G. A.
, “
Symbolic and Numerical Regression: Experiments and Applications
,”
Inform. Sci.
, Vol.
150
, Nos.
1–2
,
2003
, pp.
95
117
. https://doi.org/10.1016/S0020-0255(02)00371-7
7.
Stefano
,
C. D.
,
Cioppa
,
A. D.
, and
Marcelli
,
A.
, “
Character Preclassification Based on Genetic Programming
,”
Pattern Recog. Lett.
, Vol.
23
, No.
12
,
2002
, pp.
1439
1448
. https://doi.org/10.1016/S0167-8655(02)00104-6
8.
Zhang
,
Y.
and
Bhattacharyya
,
S.
, “
Genetic Programming in Classifying Large-Scale Data: An Ensemble Method
,”
Inf. Sci.
, Vol.
163
, Nos.
1–3
,
2004
, pp.
85
101
. https://doi.org/10.1016/j.ins.2003.03.028
9.
Banzhaf
,
W.
,
Nordin
,
P.
,
Keller
,
R. E.
, and
Francone
,
F. D.
,
Genetic Programming—An Introduction: On the Automatic Evolution of Computer Programs and Its Applications
,
Morgan Kaufmann
,
San Francisco, CA
,
1998
.
10.
Tsai
,
B. W.
,
Kannekanti
,
V.
, and
Harvey
,
J.
, “
Application of Genetic Algorithm in Asphalt Pavement Design
,”
J. Transport. Res. Board
, No. 1891,
2004
, pp.
112
120
. https://doi.org/10.3141/1891-14
11.
Pryke
,
A.
,
Evdorides
,
H.
, and
Abu Ermaileh
,
R.
, “
Optimization of Pavement Design Using a Genetic Algorithm
,”
2006 IEEE Congress on Evolutionary Computation
, Vancouver, BC, Canada, 16–21 July 2006, IEEE, Piscataway, NJ, pp.
1095
1098
.
12.
Ong
,
C. S.
,
Huang
,
J. J.
, and
Tzeng
,
G. H.
, “
Building Credit Scoring Models Using Genetic Programming
,”
Exp. Syst. Appl.
, Vol.
29
, No.
1
,
2005
, pp.
41
47
. https://doi.org/10.1016/j.eswa.2005.01.003
13.
Johari
,
A.
,
Habibagahi
,
G.
, and
Ghahramani
,
A.
, “
Prediction of Soil–Water Characteristic Curve Using Genetic Programming
,”
Geotech. Geoenviron. J.
, Vol.
132
, No.
5
,
2006
, pp.
661
665
. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661)
14.
Parasuraman
,
K.
,
Elshorbagy
,
A.
, and
Si
,
B. C.
, “
Estimating Saturated Hydraulic Conductivity Using Genetic Programming
,”
Soil Sci. Soc. Am. J.
, Vol.
71
, No.
6
,
2007
, pp.
1676
1684
. https://doi.org/10.2136/sssaj2006.0396
15.
Rezania
,
M.
and
Javadi
,
A.
, “
A New Genetic Programming Model for Predicting Settlement of Shallow Foundations
,”
Can. Geotech. J.
, Vol.
44
, No.
12
,
2007
, pp.
1462
1473
. https://doi.org/10.1139/T07-063
16.
Kermani
,
E.
,
Jafarian
,
Y.
, and
Baziar
,
M. H.
, “
New Predictive Models for the vmax/amax Ratio of Strong Ground Motions Using Genetic Programming
,”
Int. J. Civil Eng.
, Vol.
7
, No.
4
,
2009
, pp.
236
247
. https://doi.org/10.1016/j.cageo.2010.07.002
17.
Karakus
,
M.
, “
Function Identification for the Intrinsic Strength and Elastic Properties of Granitic Rocks via Genetic Programming (GP)
,”
Comput. Geosci.
, Vol.
37
, No.
9
,
2010
, pp.
1318
1323
. https://doi.org/10.1016/j.cageo.2010.09.002
18.
Shahnazari
,
H.
,
Tutunchian
,
M. A.
,
Mashayekhi
,
M.
, and
Amini
,
A. A.
, “
Application of Soft Computing for Prediction of Pavement Condition Index
,”
J. Transport. Eng.
, Vol.
138
, No.
12
,
2012
, pp.
1495
1506
. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000454
19.
AASHTO T292-91
,
Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials
,
American Association of State Highway and Transportation Officials
,
Washington, D.C.
,
1992
.
20.
AASHTO T180
,
Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop
,
American Association of State Highway and Transportation Officials
,
Washington, D.C.
,
2004
.
21.
Von Quintus
,
H.
and
Killingsworth
,
B.
, “
Analyses Relating to Pavement Material Characterization and Their Effects on Pavement Performance
,”
FHWA-RD-97-085
,
Federal Highway Administration
,
New York
,
1998
.
22.
Saleh
,
M.
and
Ji
,
S. J.
, “
Factors Affecting Resilient Modulus
,”
The 10th International Conference on Asphalt Pavements (ICAP)
, Québec City, Canada, 12–17 August 2006, International Society for Asphalt Pavements, Lino Lakes, MN.
23.
Yang
,
S. R.
,
Huang
,
W. H.
, and
Tai
,
Y. T.
, “
Variation of Resilient Modulus With Soil Suction for Compacted Subgrade Soils
,”
J. Transport. Res. Board
, No. 1913,
2005
, pp.
99
106
. https://doi.org/10.3141/1913-10
24.
Diamond
,
S.
, “
Microstructure and Pore Structure of Impact-Compacted Clays
,”
Clays Clay Min.
, Vol.
19
, No.
4
,
1971
, pp.
239
249
. https://doi.org/10.1346/CCMN.1971.0190405
25.
Yang
,
S. R.
,
Huang
,
W. H.
, and
Liao
,
C. C.
, “
Correlation Between Resilient Modulus and Plastic Deformation for Cohesive Subgrade Soil Under Repeated Loading
,”
J. Transport. Res. Board
, No.
2053
,
2008
, pp.
72
79
. https://doi.org/10.3141/2053-09
26.
Discipulus
, RML Technologies, Littleton, CO, http://www.rmltech.com (Last accessed 16 Jan 2016).
This content is only available via PDF.
You do not currently have access to this content.