Abstract

To address the issues of time-consuming and inaccurate feature fusion in traditional Internet of Things (IoT) communication big data multi-attribute fusion algorithms, a new algorithm based on the ant colony neural network is proposed. Modeling and feature decomposition processing is carried out on IoT communication big data, communication data information and data attribute characteristics are optimized into different data groups according to a data clustering algorithm, and a rough set calculation method is used to calculate information attribute characteristics. The genetic algorithm is used to improve the ant colony neural network, improve the search ability, extract the multi-attribute characteristics of IoT communication big data, filter the current big data’s characteristic attribute demand through the comparison method, and achieve multi-attribute feature fusion of IoT communication big data through the similarity measurement method. The experimental results show that the fusion error of the IoT communication big data multi-attribute feature fusion algorithm based on the ant colony neural network is small and relatively stable. During the 600 MB data fusion process, the data fusion processing time of the method in this paper is 150 ms, and the average energy consumption ratio is below 2 %, which reflects better IoT communication big data multi-attribute feature fusion performance.

References

1.
Sharma
S.
,
Roy
S. D.
, and
Kundu
S.
, “
Secrecy Outage of a Multi-relay Cooperative Communication Network with Accumulation of Harvesting Energy at Relays
,”
IET Communications
13
, no. 
18
(November
2019
):
2986
2995
, https://doi.org/10.1049/iet-com.2019.0027
2.
Sargolzaei Javan
M.
and
Akbari
M. K.
, “
SmartData 4.0: A Formal Description Framework for Big Data
,”
The Journal of Supercomputing
75
, no. 
7
(July
2019
):
3585
3620
, https://doi.org/10.1007/s11227-018-2705-y
3.
Beamish
A.
,
Raynolds
M. K.
,
Epstein
H.
,
Frost
G. V.
,
Macander
M. J.
,
Bergstadt
H.
,
Bartsch
A.
, et al., “
Recent Trends and Remaining Challenges for Optical Remote Sensing of Arctic Tundra Vegetation: A Review and Outlook
,”
Remote Sensing of Environment
246
(September
2020
): 111872, https://doi.org/10.1016/j.rse.2020.111872
4.
Li
H.-B.
and
Zhou
C.-J.
, “
Multi-attribute Features of Communication Big Data under Cloud Computing Guide Fusion Simulation
,”
Computer Simulation
38
, no. 
3
(
2021
):
393
396
, 455.
5.
Zhang
H.
,
Cheng
C.
,
Xu
Z.
, and
Li
J.
, “
Survey of Data Fusion Based on Deep Learning
,”
Computer Engineering and Applications
56
, no. 
24
(December
2020
):
1
11
, https://doi.org/10.3778/j.issn.1002-8331.2007-0475
6.
Cohen
M. L.
,
Kisala
P. A.
,
Boulton
A. J.
,
Carlozzi
N. E.
,
Cook
C. V.
, and
Tulsky
D. S.
, “
Development and Psychometric Characteristics of the TBI-QOL Communication Item Bank
,”
The Journal of Head Trauma Rehabilitation
34
, no. 
5
(September/October
2019
):
326
339
, https://doi.org/10.1097/HTR.0000000000000528
7.
Ait Ou Kharraz
M.
,
Picard
D.
,
Serhir
M.
,
Lavenu
C.
, and
Jensen
P.
, “
Measurement Methods of Outdoor Low-Voltage Cable Characteristics for Narrowband Power Line Communication
,”
IEEE Transactions on Power Delivery
34
, no. 
5
(October
2019
):
1818
1826
, https://doi.org/10.1109/TPWRD.2018.2876248
8.
García-Villegas
J. D. D.
,
García-Martínez
A.
,
Arriaga-Jordán
C. M.
,
Ruiz-Torres
M. E.
,
Rayas-Amor
A. A.
,
Dorward
P.
, and
Martínez-García
C. G.
, “
Use of Information and Communication Technologies in Small-Scale Dairy Production Systems in Central Mexico
,”
Experimental Agriculture
56
, no. 
5
(October
2020
):
767
779
, https://doi.org/10.1017/S0014479720000319
9.
Abdel-Basset
M.
,
Ding
W.
, and
El-Shahat
D.
, “
A Hybrid Harris Hawks Optimization Algorithm with Simulated Annealing for Feature Selection
,”
Artificial Intelligence Review
54
, no. 
1
(January
2021
):
593
637
, https://doi.org/10.1007/s10462-020-09860-3
10.
Jurczuk
K.
,
Czajkowski
M.
, and
Kretowski
M.
, “
Multi-GPU Approach to Global Induction of Classification Trees for Large-Scale Data Mining
,”
Applied Intelligence
51
, no. 
8
(August
2021
):
5683
5700
, https://doi.org/10.1007/s10489-020-01952-5
11.
Chen
M.
and
Zhu
D.
, “
Data Collection from Underwater Acoustic Sensor Networks Based on Optimization Algorithms
,”
Computing
102
, no. 
1
(January
2020
):
83
104
, https://doi.org/10.1007/s00607-019-00731-6
12.
Saleh
A. I.
,
Elkasas
M. S.
, and
Hamza
A. A.
, “
Ant Colony Prediction by Using Sectorized Diurnal Mobility Model for Handover Management in PCS Networks
,”
Wireless Networks
25
, no. 
2
(February
2019
):
765
775
, https://doi.org/10.1007/s11276-017-1590-2
13.
Siraj
A.
,
Vaughn
R. B.
, and
Bridges
S. M.
, “
Decision Making for Network Health Assessment in an Intelligent Intrusion Detection System Architecture
,”
International Journal of Information Technology & Decision Making
3
, no. 
2
(June
2004
):
281
306
, https://doi.org/10.1142/S0219622004001057
14.
Laskar
M. A.
and
Laskar
R. H.
, “
HiLAM-State Discriminative Multi-task Deep Neural Network in Dynamic Time Warping Framework for Text-Dependent Speaker Verification
,”
Speech Communication
121
(August
2020
):
29
43
, https://doi.org/10.1016/j.specom.2020.03.007
15.
Zhang
Y.
,
Cao
K.
,
Liang
K.
, and
Zeng
Y.
, “
Study on the Evaluation Model of Serialized Civil Aircraft Commonality Index Based on Fuzzy Set Theory
,”
Journal of Intelligent & Fuzzy Systems
40
, no. 
6
(
2021
):
11539
11558
, https://doi.org/10.3233/JIFS-202749
16.
Li
R.
,
Wang
X.
,
Liu
Y.
, and
Zhang
S.
, “
Improved Technology Similarity Measurement in the Medical Field Based on Subject-Action-Object Semantic Structure: A Case Study of Alzheimer’s Disease
,”
IEEE Transactions on Engineering Management
70
, no. 
1
(January
2023
):
280
293
, https://doi.org/10.1109/TEM.2020.3047370
This content is only available via PDF.
You do not currently have access to this content.